Cargando…
A deep learning framework to discern and count microscopic nematode eggs
In order to identify and control the menace of destructive pests via microscopic image-based identification state-of-the art deep learning architecture is demonstrated on the parasitic worm, the soybean cyst nematode (SCN), Heterodera glycines. Soybean yield loss is negatively correlated with the de...
Autores principales: | Akintayo, Adedotun, Tylka, Gregory L., Singh, Asheesh K., Ganapathysubramanian, Baskar, Singh, Arti, Sarkar, Soumik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6002363/ https://www.ncbi.nlm.nih.gov/pubmed/29904135 http://dx.doi.org/10.1038/s41598-018-27272-w |
Ejemplares similares
-
An explainable deep machine vision framework for plant stress phenotyping
por: Ghosal, Sambuddha, et al.
Publicado: (2018) -
Plant disease identification using explainable 3D deep learning on hyperspectral images
por: Nagasubramanian, Koushik, et al.
Publicado: (2019) -
A Weakly Supervised Deep Learning Framework for Sorghum Head Detection and Counting
por: Ghosal, Sambuddha, et al.
Publicado: (2019) -
Hyperspectral band selection using genetic algorithm and support vector machines for early identification of charcoal rot disease in soybean stems
por: Nagasubramanian, Koushik, et al.
Publicado: (2018) -
Deep learning-based phenotyping for genome wide association studies of sudden death syndrome in soybean
por: Rairdin, Ashlyn, et al.
Publicado: (2022)