Cargando…
Use of hepatocytes isolated from a liver-humanized mouse for studies on the metabolism of drugs: application to the metabolism of fentanyl and acetylfentanyl
PURPOSE: The usefulness of hepatocytes isolated from a liver-humanized mouse (PXB-cells) as a model in vitro system for the prediction of the in vivo metabolism of new drugs of abuse was evaluated. METHODS: For the drug metabolism study, fentanyl, a powerful synthetic opioid, and acetylfentanyl, an...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Japan
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6002451/ https://www.ncbi.nlm.nih.gov/pubmed/29963210 http://dx.doi.org/10.1007/s11419-018-0425-x |
_version_ | 1783332208077963264 |
---|---|
author | Kanamori, Tatsuyuki Togawa-Iwata, Yuko Segawa, Hiroki Yamamuro, Tadashi Kuwayama, Kenji Tsujikawa, Kenji Inoue, Hiroyuki |
author_facet | Kanamori, Tatsuyuki Togawa-Iwata, Yuko Segawa, Hiroki Yamamuro, Tadashi Kuwayama, Kenji Tsujikawa, Kenji Inoue, Hiroyuki |
author_sort | Kanamori, Tatsuyuki |
collection | PubMed |
description | PURPOSE: The usefulness of hepatocytes isolated from a liver-humanized mouse (PXB-cells) as a model in vitro system for the prediction of the in vivo metabolism of new drugs of abuse was evaluated. METHODS: For the drug metabolism study, fentanyl, a powerful synthetic opioid, and acetylfentanyl, an N-acetyl analog of fentanyl, were selected as model drugs. PXB-cells were cultured with the drug for 24–48 h and then the media were collected and analyzed by liquid chromatography/mass spectrometry after deproteinization with acetonitrile. RESULTS: The main metabolite formed from fentanyl by PXB-cells was the desphenethylated metabolite (nor-fentanyl), and the other major metabolites formed were 4′-hydroxy-fentanyl, β-hydroxy-fentanyl and (ω-1)-hydroxy-fentanyl. ω-Hydroxy-fentanyl and 4′-hydroxy-3′-methoxy-fentanyl were the minor metabolites. Similar results were obtained for acetylfentanyl. The metabolite profile of fentanyl in PXB-cells was consistent with the in vivo metabolite profile of fentanyl reported previously. Most of the 4′-hydroxy- and 4′-hydroxy-3′-methoxy-metabolites of fentanyl and acetylfentanyl were conjugated in PXB-cells, indicating that PXB-cells had high conjugation enzyme activities. From experiments using human liver microsomes and anti-CYP antibodies, it was revealed that CYP3A4 was involved in the production of nor-fentanyl, β-hydroxy-fentanyl and (ω-1)-hydroxy-fentanyl, while CYP2D6 was partially involved in the production of 4′-hydroxy-fentanyl. CONCLUSIONS: Our results indicated that PXB-cells have high activities of phase I and phase II drug-metabolizing-enzymes, can be stably supplied, and are easy to use; thus, PXB-cells are highly useful for the prediction of the in vivo metabolism of drugs of abuse. |
format | Online Article Text |
id | pubmed-6002451 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Springer Japan |
record_format | MEDLINE/PubMed |
spelling | pubmed-60024512018-06-29 Use of hepatocytes isolated from a liver-humanized mouse for studies on the metabolism of drugs: application to the metabolism of fentanyl and acetylfentanyl Kanamori, Tatsuyuki Togawa-Iwata, Yuko Segawa, Hiroki Yamamuro, Tadashi Kuwayama, Kenji Tsujikawa, Kenji Inoue, Hiroyuki Forensic Toxicol Original Article PURPOSE: The usefulness of hepatocytes isolated from a liver-humanized mouse (PXB-cells) as a model in vitro system for the prediction of the in vivo metabolism of new drugs of abuse was evaluated. METHODS: For the drug metabolism study, fentanyl, a powerful synthetic opioid, and acetylfentanyl, an N-acetyl analog of fentanyl, were selected as model drugs. PXB-cells were cultured with the drug for 24–48 h and then the media were collected and analyzed by liquid chromatography/mass spectrometry after deproteinization with acetonitrile. RESULTS: The main metabolite formed from fentanyl by PXB-cells was the desphenethylated metabolite (nor-fentanyl), and the other major metabolites formed were 4′-hydroxy-fentanyl, β-hydroxy-fentanyl and (ω-1)-hydroxy-fentanyl. ω-Hydroxy-fentanyl and 4′-hydroxy-3′-methoxy-fentanyl were the minor metabolites. Similar results were obtained for acetylfentanyl. The metabolite profile of fentanyl in PXB-cells was consistent with the in vivo metabolite profile of fentanyl reported previously. Most of the 4′-hydroxy- and 4′-hydroxy-3′-methoxy-metabolites of fentanyl and acetylfentanyl were conjugated in PXB-cells, indicating that PXB-cells had high conjugation enzyme activities. From experiments using human liver microsomes and anti-CYP antibodies, it was revealed that CYP3A4 was involved in the production of nor-fentanyl, β-hydroxy-fentanyl and (ω-1)-hydroxy-fentanyl, while CYP2D6 was partially involved in the production of 4′-hydroxy-fentanyl. CONCLUSIONS: Our results indicated that PXB-cells have high activities of phase I and phase II drug-metabolizing-enzymes, can be stably supplied, and are easy to use; thus, PXB-cells are highly useful for the prediction of the in vivo metabolism of drugs of abuse. Springer Japan 2018-06-04 2018 /pmc/articles/PMC6002451/ /pubmed/29963210 http://dx.doi.org/10.1007/s11419-018-0425-x Text en © The Author(s) 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Original Article Kanamori, Tatsuyuki Togawa-Iwata, Yuko Segawa, Hiroki Yamamuro, Tadashi Kuwayama, Kenji Tsujikawa, Kenji Inoue, Hiroyuki Use of hepatocytes isolated from a liver-humanized mouse for studies on the metabolism of drugs: application to the metabolism of fentanyl and acetylfentanyl |
title | Use of hepatocytes isolated from a liver-humanized mouse for studies on the metabolism of drugs: application to the metabolism of fentanyl and acetylfentanyl |
title_full | Use of hepatocytes isolated from a liver-humanized mouse for studies on the metabolism of drugs: application to the metabolism of fentanyl and acetylfentanyl |
title_fullStr | Use of hepatocytes isolated from a liver-humanized mouse for studies on the metabolism of drugs: application to the metabolism of fentanyl and acetylfentanyl |
title_full_unstemmed | Use of hepatocytes isolated from a liver-humanized mouse for studies on the metabolism of drugs: application to the metabolism of fentanyl and acetylfentanyl |
title_short | Use of hepatocytes isolated from a liver-humanized mouse for studies on the metabolism of drugs: application to the metabolism of fentanyl and acetylfentanyl |
title_sort | use of hepatocytes isolated from a liver-humanized mouse for studies on the metabolism of drugs: application to the metabolism of fentanyl and acetylfentanyl |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6002451/ https://www.ncbi.nlm.nih.gov/pubmed/29963210 http://dx.doi.org/10.1007/s11419-018-0425-x |
work_keys_str_mv | AT kanamoritatsuyuki useofhepatocytesisolatedfromaliverhumanizedmouseforstudiesonthemetabolismofdrugsapplicationtothemetabolismoffentanylandacetylfentanyl AT togawaiwatayuko useofhepatocytesisolatedfromaliverhumanizedmouseforstudiesonthemetabolismofdrugsapplicationtothemetabolismoffentanylandacetylfentanyl AT segawahiroki useofhepatocytesisolatedfromaliverhumanizedmouseforstudiesonthemetabolismofdrugsapplicationtothemetabolismoffentanylandacetylfentanyl AT yamamurotadashi useofhepatocytesisolatedfromaliverhumanizedmouseforstudiesonthemetabolismofdrugsapplicationtothemetabolismoffentanylandacetylfentanyl AT kuwayamakenji useofhepatocytesisolatedfromaliverhumanizedmouseforstudiesonthemetabolismofdrugsapplicationtothemetabolismoffentanylandacetylfentanyl AT tsujikawakenji useofhepatocytesisolatedfromaliverhumanizedmouseforstudiesonthemetabolismofdrugsapplicationtothemetabolismoffentanylandacetylfentanyl AT inouehiroyuki useofhepatocytesisolatedfromaliverhumanizedmouseforstudiesonthemetabolismofdrugsapplicationtothemetabolismoffentanylandacetylfentanyl |