Cargando…
Large herbivores influence plant litter decomposition by altering soil properties and plant quality in a meadow steppe
Large herbivores act as a major driver of plant litter decomposition in grasslands. The modifications of soil biotic and abiotic properties, as well as the changes in quality (C/N ratio) of plant litter, are two key pathways by which large herbivores can affect litter decomposition. Yet we know litt...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6002471/ https://www.ncbi.nlm.nih.gov/pubmed/29904052 http://dx.doi.org/10.1038/s41598-018-26835-1 |
Sumario: | Large herbivores act as a major driver of plant litter decomposition in grasslands. The modifications of soil biotic and abiotic properties, as well as the changes in quality (C/N ratio) of plant litter, are two key pathways by which large herbivores can affect litter decomposition. Yet we know little about the relative role of these two mechanisms in mediating decomposition. Here, by combining a large-scale and a small-scale field manipulative experiment, we examined how livestock (cattle and sheep) grazing affects standing litter decomposition of a dominant grass, Leymus chinensis in grasslands in northeast China. We found that livestock grazing affected litter decay rate both by its influences on soil property (soil moisture, nutrient content, and microbial communities) and on plant litter quality (C/N ratio). Due to their distinct body size and diet preference, cattle and sheep affected soil property and litter quality, thus litter decay rate, differently by causing varying disturbance regimes and by feeding on different dominant species. Our study provides evidence that herbivore grazing can influence litter decomposition by modifying soil conditions and litter quality independently. Therefore, choosing the proper large herbivore(s) in grazing regimes may be important in maintaining nutrient cycling in grassland ecosystems. |
---|