Cargando…

Relativistic Doppler-boosted γ-rays in High Fields

The relativistic Doppler effect is one of the most famous implications of the principles of special relativity and is intrinsic to moving radiation sources, relativistic optics and many astrophysical phenomena. It occurs in the case of a plasma sail accelerated to relativistic velocities by an exter...

Descripción completa

Detalles Bibliográficos
Autores principales: Capdessus, Remi, King, Martin, Del Sorbo, Dario, Duff, Matthew, Ridgers, Christopher P., McKenna, Paul
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6002516/
https://www.ncbi.nlm.nih.gov/pubmed/29904181
http://dx.doi.org/10.1038/s41598-018-27122-9
Descripción
Sumario:The relativistic Doppler effect is one of the most famous implications of the principles of special relativity and is intrinsic to moving radiation sources, relativistic optics and many astrophysical phenomena. It occurs in the case of a plasma sail accelerated to relativistic velocities by an external driver, such as an ultra-intense laser pulse. Here we show that the relativistic Doppler effect on the high energy synchrotron photon emission (~10 MeV), strongly depends on two intrinsic properties of the plasma (charge state and ion mass) and the transverse extent of the driver. When the moving plasma becomes relativistically transparent to the driver, we show that the γ-ray emission is Doppler-boosted and the angular emission decreases; optimal for the highest charge-to-mass ratio ion species (i.e. a hydrogen plasma). This provides new fundamental insight into the generation of γ-rays in extreme conditions and informs related experiments using multi-petawatt laser facilities.