Cargando…
Fisher Discrimination Regularized Robust Coding Based on a Local Center for Tumor Classification
Tumor classification is crucial to the clinical diagnosis and proper treatment of cancers. In recent years, sparse representation-based classifier (SRC) has been proposed for tumor classification. The employed dictionary plays an important role in sparse representation-based or sparse coding-based c...
Autores principales: | Li, Weibiao, Liao, Bo, Zhu, Wen, Chen, Min, Li, Zejun, Wei, Xiaohui, Peng, Lihong, Huang, Guohua, Cai, Lijun, Chen, HaoWen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6002553/ https://www.ncbi.nlm.nih.gov/pubmed/29904059 http://dx.doi.org/10.1038/s41598-018-27364-7 |
Ejemplares similares
-
Classification of micro-calcification in mammograms using scalable linear Fisher discriminant analysis
por: Suhail, Zobia, et al.
Publicado: (2018) -
Molecular cancer classification using a meta-sample-based regularized robust coding method
por: Wang, Shu-Lin, et al.
Publicado: (2014) -
Maxdenominator Reweighted Sparse Representation for Tumor Classification
por: Li, Weibiao, et al.
Publicado: (2017) -
Semi-Supervised Maximum Discriminative Local Margin for Gene Selection
por: Li, Zejun, et al.
Publicado: (2018) -
On sparse Fisher discriminant method for microarray data analysis
por: Fung, Eric S, et al.
Publicado: (2007)