Cargando…

Role of Fibroblast Growth Factor Receptor 2b in the Cross Talk between Autophagy and Differentiation: Involvement of Jun N-Terminal Protein Kinase Signaling

Fibroblast growth factor receptor 2b (FGFR2b) is a receptor tyrosine kinase expressed exclusively in epithelial cells. We previously demonstrated that FGFR2b induces autophagy and that this process is required for the triggering of FGFR2b-mediated early differentiation of keratinocytes. However, the...

Descripción completa

Detalles Bibliográficos
Autores principales: Nanni, Monica, Ranieri, Danilo, Rosato, Benedetta, Torrisi, Maria Rosaria, Belleudi, Francesca
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6002692/
https://www.ncbi.nlm.nih.gov/pubmed/29685904
http://dx.doi.org/10.1128/MCB.00119-18
Descripción
Sumario:Fibroblast growth factor receptor 2b (FGFR2b) is a receptor tyrosine kinase expressed exclusively in epithelial cells. We previously demonstrated that FGFR2b induces autophagy and that this process is required for the triggering of FGFR2b-mediated early differentiation of keratinocytes. However, the molecular mechanisms regulating this interplay remain to be elucidated. Since we have also recently shown that Jun N-terminal protein kinase 1 (JNK1) signaling is involved in FGFR2b-induced autophagy and a possible role of the JNK pathway in epidermal differentiation has been suggested (though it is still debated), we investigated here the cross talk between FGFR2b-mediated autophagy and differentiation, focusing on the downstream JNK signaling. Biochemical, molecular, and immunofluorescence approaches in 2-dimensional (2-D) keratinocyte cultures and three-dimensional (3-D) organotypic skin equivalents confirmed that FGFR2b overexpression increased both autophagy and early differentiation. The use of FGFR2b substrate inhibitors and the silencing of JNK1 highlighted that this signaling is required not only for autophagy but also for the triggering of early differentiation. In contrast, the extracellular signal-regulated kinase 1 and 2 (ERK1/2) pathway did not appear to be involved in the two processes, and AKT signaling, whose activation contributes to the FGFR2b-mediated onset of keratinocyte differentiation, was not required for the triggering of autophagy. Overall, our results point to JNK1 as a signaling hub that regulates the interplay between FGFR2b-induced autophagy and differentiation.