Cargando…
Topolnogical classifier for detecting the emergence of epileptic seizures
OBJECTIVE: An innovative method based on topological data analysis is introduced for classifying EEG recordings of patients affected by epilepsy. We construct a topological space from a collection of EEGs signals using Persistent Homology; then, we analyse the space by Persistent entropy, a global t...
Autores principales: | Piangerelli, Marco, Rucco, Matteo, Tesei, Luca, Merelli, Emanuela |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6003048/ https://www.ncbi.nlm.nih.gov/pubmed/29903043 http://dx.doi.org/10.1186/s13104-018-3482-7 |
Ejemplares similares
-
Ensemble Classifier for Epileptic Seizure Detection for Imperfect EEG Data
por: Abualsaud, Khalid, et al.
Publicado: (2015) -
A review of epileptic seizure detection using machine learning classifiers
por: Siddiqui, Mohammad Khubeb, et al.
Publicado: (2020) -
Epileptic seizure detection with deep EEG features by convolutional neural network and shallow classifiers
por: Zeng, Wei, et al.
Publicado: (2023) -
A DM-ELM based classifier for EEG brain signal classification for epileptic seizure detection
por: Mishra, Shruti, et al.
Publicado: (2022) -
An automated detection of epileptic seizures EEG using CNN classifier based on feature fusion with high accuracy
por: Chen, Wenna, et al.
Publicado: (2023)