Cargando…

Immunomodulatory properties of quercetin-3-O-α-L-rhamnopyranoside from Rapanea melanophloeos against influenza a virus

BACKGROUND: Influenza infection is a major public health threat. The role of influenza A virus-induced inflammatory response in severe cases of this disease is widely recognized. Drug resistance and side effects of chemical treatments have been observed, resulting in increased interest in alternativ...

Descripción completa

Detalles Bibliográficos
Autores principales: Mehrbod, Parvaneh, Abdalla, Muna Ali, Fotouhi, Fatemeh, Heidarzadeh, Masoumeh, Aro, Abimbola O., Eloff, Jacobus N., McGaw, Lyndy J., Fasina, Folorunso O.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6003079/
https://www.ncbi.nlm.nih.gov/pubmed/29903008
http://dx.doi.org/10.1186/s12906-018-2246-1
Descripción
Sumario:BACKGROUND: Influenza infection is a major public health threat. The role of influenza A virus-induced inflammatory response in severe cases of this disease is widely recognized. Drug resistance and side effects of chemical treatments have been observed, resulting in increased interest in alternative use of herbal medications for prophylaxis against this infection. The South African medicinal plant, Rapanea melanophloeos (RM) (L.) Mez of the family Myrsinaceae was selected owing to its traditional use for the treatment of several diseases such as respiratory ailments and also previous preliminary studies of anti-influenza activity of its methanolic extract. The aim of this study was to investigate the immunomodulatory properties of a glycoside flavone isolated from RM against influenza A virus. METHODS: The non-cytotoxic concentration of the quercetin-3-O-α-L-rhamnopyranoside (Q3R) was determined by MTT assay and tested for activity against influenza A virus (IAV) in simultaneous, pre-penetration and post-penetration combination treatments over 1 h incubation on MDCK cells. The virus titer and viral load targeting NP and M2 viral genes were determined using HA and qPCR, respectively. TNF-α and IL-27 as pro- and anti-inflammatory cytokines were measured at RNA and protein levels by qPCR and ELISA, respectively. RESULTS: Quercetin-3-O-α-L-rhamnopyranoside at 150 μg/ml decreased the viral titer by 6 logs (p < 0.01) in the simultaneous procedure. The NP and M2 genes copy numbers as viral target genes, calculated based on the Ct values and standard formula, significantly decreased in simultaneous treatment (p < 0.01). The expression of cytokines was also considerably affected by the compound treatment. CONCLUSIONS: This is the first report of quercetin-3-O-α-L-rhamnopyranoside from RM and its immunomodulatory properties against influenza A virus. Further research will focus on detecting the specific mechanism of virus-host interactions. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12906-018-2246-1) contains supplementary material, which is available to authorized users.