Cargando…

Theaflavin alleviates inflammatory response and brain injury induced by cerebral hemorrhage via inhibiting the nuclear transcription factor kappa β-related pathway in rats

OBJECTIVE: Intracerebral hemorrhage (ICH) is one of the most common acute cerebrovascular diseases with high mortality. Numerous studies have shown that inflammatory response played an important role in ICH-induced brain injury. Theaflavin (TF) extracted from black tea has various biological functio...

Descripción completa

Detalles Bibliográficos
Autores principales: Fu, Guanglei, Wang, Hua, Cai, Youli, Zhao, Hui, Fu, Wenjun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove Medical Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6003286/
https://www.ncbi.nlm.nih.gov/pubmed/29928110
http://dx.doi.org/10.2147/DDDT.S164324
_version_ 1783332348637478912
author Fu, Guanglei
Wang, Hua
Cai, Youli
Zhao, Hui
Fu, Wenjun
author_facet Fu, Guanglei
Wang, Hua
Cai, Youli
Zhao, Hui
Fu, Wenjun
author_sort Fu, Guanglei
collection PubMed
description OBJECTIVE: Intracerebral hemorrhage (ICH) is one of the most common acute cerebrovascular diseases with high mortality. Numerous studies have shown that inflammatory response played an important role in ICH-induced brain injury. Theaflavin (TF) extracted from black tea has various biological functions including anti-inflammatory activity. In this study, we investigated whether TF could inhibit ICH-induced inflammatory response in rats and explored its mechanism. MATERIALS AND METHODS: ICH rat models were induced with type VII collagenase and pretreated with TF by gavage in different doses (25 mg/kg–100 mg/kg). Twenty-four hours after ICH attack, we evaluated the rats’ behavioral performance, the blood–brain barrier (BBB) integrity, and the formation of cerebral edema. The levels of reactive oxygen species (ROS) and inflammatory cytokines were examined by 2′,7′-dichlorofluorescin diacetate and enzyme-linked immunosorbent assay. Nissl staining and transferase dUTP nick end labeling (TUNEL) were aimed to detect the neuron loss and apoptosis, the mechanism of which was explored by Western blot. RESULTS: It was found that in the pretreated ICH rats TF significantly alleviated the behavioral defects, protected BBB integrity, and decreased the formation of cerebral edema and the levels of ROS as well as inflammatory cytokines (including interleukin-1 beta [IL-1β], IL-18, tumor nectosis factor-alpha, interferon-γ, transforming growth factor beta, and (C-X-C motif) ligand 1 [CXCL1]). Nissl staining and TUNEL displayed TF could protect against the neuron loss and apoptosis via inhibiting the activation of nuclear transcription factor kappa-β-p65 (NF-κβ-p65), caspase-1, and IL-1β. We also found that phorbol 12-myristate 13-acetate, a nonspecific activator of NF-κβ-p65, weakened the positive effect of TF on ICH-induced neural defects and neuron apoptosis by upregulating NF-κβ-related signaling pathway. CONCLUSION: TF could alleviate ICH-induced inflammatory responses and brain injury in rats via inhibiting NF-κβ-related pathway, which may provide a new way for the therapy of ICH.
format Online
Article
Text
id pubmed-6003286
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Dove Medical Press
record_format MEDLINE/PubMed
spelling pubmed-60032862018-06-20 Theaflavin alleviates inflammatory response and brain injury induced by cerebral hemorrhage via inhibiting the nuclear transcription factor kappa β-related pathway in rats Fu, Guanglei Wang, Hua Cai, Youli Zhao, Hui Fu, Wenjun Drug Des Devel Ther Original Research OBJECTIVE: Intracerebral hemorrhage (ICH) is one of the most common acute cerebrovascular diseases with high mortality. Numerous studies have shown that inflammatory response played an important role in ICH-induced brain injury. Theaflavin (TF) extracted from black tea has various biological functions including anti-inflammatory activity. In this study, we investigated whether TF could inhibit ICH-induced inflammatory response in rats and explored its mechanism. MATERIALS AND METHODS: ICH rat models were induced with type VII collagenase and pretreated with TF by gavage in different doses (25 mg/kg–100 mg/kg). Twenty-four hours after ICH attack, we evaluated the rats’ behavioral performance, the blood–brain barrier (BBB) integrity, and the formation of cerebral edema. The levels of reactive oxygen species (ROS) and inflammatory cytokines were examined by 2′,7′-dichlorofluorescin diacetate and enzyme-linked immunosorbent assay. Nissl staining and transferase dUTP nick end labeling (TUNEL) were aimed to detect the neuron loss and apoptosis, the mechanism of which was explored by Western blot. RESULTS: It was found that in the pretreated ICH rats TF significantly alleviated the behavioral defects, protected BBB integrity, and decreased the formation of cerebral edema and the levels of ROS as well as inflammatory cytokines (including interleukin-1 beta [IL-1β], IL-18, tumor nectosis factor-alpha, interferon-γ, transforming growth factor beta, and (C-X-C motif) ligand 1 [CXCL1]). Nissl staining and TUNEL displayed TF could protect against the neuron loss and apoptosis via inhibiting the activation of nuclear transcription factor kappa-β-p65 (NF-κβ-p65), caspase-1, and IL-1β. We also found that phorbol 12-myristate 13-acetate, a nonspecific activator of NF-κβ-p65, weakened the positive effect of TF on ICH-induced neural defects and neuron apoptosis by upregulating NF-κβ-related signaling pathway. CONCLUSION: TF could alleviate ICH-induced inflammatory responses and brain injury in rats via inhibiting NF-κβ-related pathway, which may provide a new way for the therapy of ICH. Dove Medical Press 2018-06-12 /pmc/articles/PMC6003286/ /pubmed/29928110 http://dx.doi.org/10.2147/DDDT.S164324 Text en © 2018 Fu et al. This work is published and licensed by Dove Medical Press Limited The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.
spellingShingle Original Research
Fu, Guanglei
Wang, Hua
Cai, Youli
Zhao, Hui
Fu, Wenjun
Theaflavin alleviates inflammatory response and brain injury induced by cerebral hemorrhage via inhibiting the nuclear transcription factor kappa β-related pathway in rats
title Theaflavin alleviates inflammatory response and brain injury induced by cerebral hemorrhage via inhibiting the nuclear transcription factor kappa β-related pathway in rats
title_full Theaflavin alleviates inflammatory response and brain injury induced by cerebral hemorrhage via inhibiting the nuclear transcription factor kappa β-related pathway in rats
title_fullStr Theaflavin alleviates inflammatory response and brain injury induced by cerebral hemorrhage via inhibiting the nuclear transcription factor kappa β-related pathway in rats
title_full_unstemmed Theaflavin alleviates inflammatory response and brain injury induced by cerebral hemorrhage via inhibiting the nuclear transcription factor kappa β-related pathway in rats
title_short Theaflavin alleviates inflammatory response and brain injury induced by cerebral hemorrhage via inhibiting the nuclear transcription factor kappa β-related pathway in rats
title_sort theaflavin alleviates inflammatory response and brain injury induced by cerebral hemorrhage via inhibiting the nuclear transcription factor kappa β-related pathway in rats
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6003286/
https://www.ncbi.nlm.nih.gov/pubmed/29928110
http://dx.doi.org/10.2147/DDDT.S164324
work_keys_str_mv AT fuguanglei theaflavinalleviatesinflammatoryresponseandbraininjuryinducedbycerebralhemorrhageviainhibitingthenucleartranscriptionfactorkappabrelatedpathwayinrats
AT wanghua theaflavinalleviatesinflammatoryresponseandbraininjuryinducedbycerebralhemorrhageviainhibitingthenucleartranscriptionfactorkappabrelatedpathwayinrats
AT caiyouli theaflavinalleviatesinflammatoryresponseandbraininjuryinducedbycerebralhemorrhageviainhibitingthenucleartranscriptionfactorkappabrelatedpathwayinrats
AT zhaohui theaflavinalleviatesinflammatoryresponseandbraininjuryinducedbycerebralhemorrhageviainhibitingthenucleartranscriptionfactorkappabrelatedpathwayinrats
AT fuwenjun theaflavinalleviatesinflammatoryresponseandbraininjuryinducedbycerebralhemorrhageviainhibitingthenucleartranscriptionfactorkappabrelatedpathwayinrats