Cargando…
Vacancy defect configurations in the metal–organic framework UiO-66: energetics and electronic structure
Vacancy lattice sites in the metal–organic framework UiO-66 are known to have a profound effect on the material properties. Here we use density functional theory to compare the energies of defect arrangements containing missing linkers and missing metal clusters for different choices of charge compe...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6003546/ https://www.ncbi.nlm.nih.gov/pubmed/30009026 http://dx.doi.org/10.1039/c7ta11155j |
_version_ | 1783332376794890240 |
---|---|
author | Svane, Katrine L. Bristow, Jessica K. Gale, Julian D. Walsh, Aron |
author_facet | Svane, Katrine L. Bristow, Jessica K. Gale, Julian D. Walsh, Aron |
author_sort | Svane, Katrine L. |
collection | PubMed |
description | Vacancy lattice sites in the metal–organic framework UiO-66 are known to have a profound effect on the material properties. Here we use density functional theory to compare the energies of defect arrangements containing missing linkers and missing metal clusters for different choices of charge compensation. Our results show that the preference for missing metal clusters or missing linker defects depends on the charge compensation as well as the overall concentration of defects in the crystal. Both regimes can be experimentally accessible depending on the synthesis conditions. We investigate the electronic structure of the different types of defects, showing that, despite some changes in the localisation of the frontier orbitals, the electronic energy levels are only weakly affected by the presence of point defects. |
format | Online Article Text |
id | pubmed-6003546 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-60035462018-07-11 Vacancy defect configurations in the metal–organic framework UiO-66: energetics and electronic structure Svane, Katrine L. Bristow, Jessica K. Gale, Julian D. Walsh, Aron J Mater Chem A Mater Chemistry Vacancy lattice sites in the metal–organic framework UiO-66 are known to have a profound effect on the material properties. Here we use density functional theory to compare the energies of defect arrangements containing missing linkers and missing metal clusters for different choices of charge compensation. Our results show that the preference for missing metal clusters or missing linker defects depends on the charge compensation as well as the overall concentration of defects in the crystal. Both regimes can be experimentally accessible depending on the synthesis conditions. We investigate the electronic structure of the different types of defects, showing that, despite some changes in the localisation of the frontier orbitals, the electronic energy levels are only weakly affected by the presence of point defects. Royal Society of Chemistry 2018-05-14 2018-04-24 /pmc/articles/PMC6003546/ /pubmed/30009026 http://dx.doi.org/10.1039/c7ta11155j Text en This journal is © The Royal Society of Chemistry 2018 http://creativecommons.org/licenses/by/3.0/ This article is freely available. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence (CC BY 3.0) |
spellingShingle | Chemistry Svane, Katrine L. Bristow, Jessica K. Gale, Julian D. Walsh, Aron Vacancy defect configurations in the metal–organic framework UiO-66: energetics and electronic structure |
title | Vacancy defect configurations in the metal–organic framework UiO-66: energetics and electronic structure
|
title_full | Vacancy defect configurations in the metal–organic framework UiO-66: energetics and electronic structure
|
title_fullStr | Vacancy defect configurations in the metal–organic framework UiO-66: energetics and electronic structure
|
title_full_unstemmed | Vacancy defect configurations in the metal–organic framework UiO-66: energetics and electronic structure
|
title_short | Vacancy defect configurations in the metal–organic framework UiO-66: energetics and electronic structure
|
title_sort | vacancy defect configurations in the metal–organic framework uio-66: energetics and electronic structure |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6003546/ https://www.ncbi.nlm.nih.gov/pubmed/30009026 http://dx.doi.org/10.1039/c7ta11155j |
work_keys_str_mv | AT svanekatrinel vacancydefectconfigurationsinthemetalorganicframeworkuio66energeticsandelectronicstructure AT bristowjessicak vacancydefectconfigurationsinthemetalorganicframeworkuio66energeticsandelectronicstructure AT galejuliand vacancydefectconfigurationsinthemetalorganicframeworkuio66energeticsandelectronicstructure AT walsharon vacancydefectconfigurationsinthemetalorganicframeworkuio66energeticsandelectronicstructure |