Cargando…
Predictive Modeling of the Progression of Alzheimer’s Disease with Recurrent Neural Networks
The number of service visits of Alzheimer’s disease (AD) patients is different from each other and their visit time intervals are non-uniform. Although the literature has revealed many approaches in disease progression modeling, they fail to leverage these time-relevant part of patients’ medical rec...
Autores principales: | Wang, Tingyan, Qiu, Robin G., Yu, Ming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6003986/ https://www.ncbi.nlm.nih.gov/pubmed/29907747 http://dx.doi.org/10.1038/s41598-018-27337-w |
Ejemplares similares
-
Predicting Alzheimer’s disease progression using deep recurrent neural networks()
por: Nguyen, Minh, et al.
Publicado: (2020) -
Identifying the regional substrates predictive of Alzheimer's disease progression through a convolutional neural network model and occlusion
por: Kwak, Kichang, et al.
Publicado: (2022) -
Interdependence of neural network dysfunction and microglial alterations in Alzheimer’s disease-related models
por: Das, Melanie, et al.
Publicado: (2021) -
Predictive modelling of Parkinson’s disease progression based on RNA-Sequence with densely connected deep recurrent neural networks
por: Ahmed, Siraj, et al.
Publicado: (2022) -
Effect of Alzheimer's disease on the dynamical and computational characteristics of recurrent neural networks
por: Bachmann, Claudia, et al.
Publicado: (2013)