Cargando…

Data assimilation for the heat equation using stabilized finite element methods

We consider data assimilation for the heat equation using a finite element space semi-discretization. The approach is optimization based, but the design of regularization operators and parameters rely on techniques from the theory of stabilized finite elements. The space semi-discretized system is s...

Descripción completa

Detalles Bibliográficos
Autores principales: Burman, Erik, Oksanen, Lauri
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6004001/
https://www.ncbi.nlm.nih.gov/pubmed/29973740
http://dx.doi.org/10.1007/s00211-018-0949-3
Descripción
Sumario:We consider data assimilation for the heat equation using a finite element space semi-discretization. The approach is optimization based, but the design of regularization operators and parameters rely on techniques from the theory of stabilized finite elements. The space semi-discretized system is shown to admit a unique solution. Combining sharp estimates of the numerical stability of the discrete scheme and conditional stability estimates of the ill-posed continuous pde-model we then derive error estimates that reflect the approximation order of the finite element space and the stability of the continuous model. Two different data assimilation situations with different stability properties are considered to illustrate the framework. Full detail on how to adapt known stability estimates for the continuous model to work with the numerical analysis framework is given in “Appendix”.