Cargando…
Stability and error analysis for a diffuse interface approach to an advection–diffusion equation on a moving surface
In this paper we analyze a fully discrete numerical scheme for solving a parabolic PDE on a moving surface. The method is based on a diffuse interface approach that involves a level set description of the moving surface. Under suitable conditions on the spatial grid size, the time step and the inter...
Autores principales: | Deckelnick, Klaus, Styles, Vanessa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6004022/ https://www.ncbi.nlm.nih.gov/pubmed/29973742 http://dx.doi.org/10.1007/s00211-018-0946-6 |
Ejemplares similares
-
Numerical solution of time-dependent advection-diffusion-reaction equations
por: Hundsdorfer, Willem, et al.
Publicado: (2003) -
Reactive-Diffusive-Advective Traveling Waves in a Family of Degenerate Nonlinear Equations
por: Sánchez-Garduño, Faustino, et al.
Publicado: (2016) -
Solutions of fuzzy advection-diffusion and heat equations by natural adomian decomposition method
por: Jamal, Noor, et al.
Publicado: (2023) -
Efficient numerical simulations based on an explicit group approach for the time fractional advection–diffusion reaction equation
por: Salama, Fouad Mohammad, et al.
Publicado: (2023) -
Finite Difference Method for Time-Space Fractional Advection–Diffusion Equations with Riesz Derivative
por: Arshad, Sadia, et al.
Publicado: (2018)