Cargando…

Medical Treatment Options for Patients with Epidermal Growth Factor Receptor Mutation-Positive Non-Small Cell Lung Cancer Suffering from Brain Metastases and/or Leptomeningeal Disease

Brain metastases and/or leptomeningeal disease (LMD) with associated central nervous system (CNS) metastases are known complications of advanced epidermal growth factor receptor (EGFR) mutation-positive non-small cell lung cancer (NSCLC). It is important, therefore, to assess the activity of EGFR ty...

Descripción completa

Detalles Bibliográficos
Autor principal: Hochmair, Maximilian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6004273/
https://www.ncbi.nlm.nih.gov/pubmed/29700687
http://dx.doi.org/10.1007/s11523-018-0566-1
Descripción
Sumario:Brain metastases and/or leptomeningeal disease (LMD) with associated central nervous system (CNS) metastases are known complications of advanced epidermal growth factor receptor (EGFR) mutation-positive non-small cell lung cancer (NSCLC). It is important, therefore, to assess the activity of EGFR tyrosine kinase inhibitors (TKIs) versus such CNS complications. This review explores the literature reporting the intracranial activity of EGFR TKIs, and finds that there is evidence for varying efficacy of the approved agents, erlotinib, gefitinib, afatinib, and osimertinib in patients with CNS metastases. Other EGFR TKIs in development, such as AZD3759, may have a future role as therapeutic options in this setting. Emerging evidence indicates that the second- and third-generation EGFR TKIs, afatinib and osimertinib, effectively penetrate the blood-brain barrier, and therefore represent viable treatment options for CNS lesions, and can reduce the risk of CNS progression. These agents should therefore be considered as first-line treatment options in patients with EGFR mutation-positive NSCLC who have brain metastases and/or LMD. While there are currently no prospective data comparing the intracranial efficacy of second- and third-generation EGFR TKIs in this setting, CNS activity and protection offered by different EGFR TKIs should be an additional consideration when making decisions about the optimal sequence of treatment with EGFR TKIs in order to maximize survival benefit in individual patients. [Image: see text]