Cargando…

XK-related protein 5 (XKR5) is a novel negative regulator of KIT/D816V-mediated transformation

In order to investigate the molecular mechanisms by which the oncogenic mutant KIT/D816V causes transformation of cells, we investigated proteins that selectively bind KIT/D816V, but not wild-type KIT, as potential mediators of transformation. By mass spectrometry several proteins were identified, a...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Jianmin, Thingholm, Tine, Højrup, Peter, Rönnstrand, Lars
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6004359/
https://www.ncbi.nlm.nih.gov/pubmed/29910466
http://dx.doi.org/10.1038/s41389-018-0057-3
Descripción
Sumario:In order to investigate the molecular mechanisms by which the oncogenic mutant KIT/D816V causes transformation of cells, we investigated proteins that selectively bind KIT/D816V, but not wild-type KIT, as potential mediators of transformation. By mass spectrometry several proteins were identified, among them a previously uncharacterized protein denoted XKR5 (XK-related protein 5), which is related to the X Kell blood group proteins. We could demonstrate that interaction between XKR5 and KIT/D816V leads to phosphorylation of XKR5 at Tyr 369, Tyr487, and Tyr 543. Tyrosine phosphorylated XKR5 acts as a negative regulator of KIT signaling, which leads to downregulation of phosphorylation of ERK, AKT, and p38. This led to reduced proliferation and colony forming capacity in semi-solid medium. Taken together, our data demonstrate that XKR5 is a novel type of negative regulator of KIT-mediated transformation.