Cargando…
Estimation of Complexity of Sampled Biomedical Continuous Time Signals Using Approximate Entropy
Non-linear analysis found many applications in biomedicine. Approximate entropy (ApEn) is a popular index of complexity often applied to biomedical data, as it provides quite stable indications when processing short and noisy epochs. However, ApEn strongly depends on parameters, which were chosen in...
Autor principal: | Mesin, Luca |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6004374/ https://www.ncbi.nlm.nih.gov/pubmed/29942263 http://dx.doi.org/10.3389/fphys.2018.00710 |
Ejemplares similares
-
On the use of approximate entropy and sample entropy with centre of pressure time-series
por: Montesinos, Luis, et al.
Publicado: (2018) -
Estimation of cardiac output and peripheral resistance using square-wave-approximated aortic flow signal
por: Fazeli, Nima, et al.
Publicado: (2012) -
Classification of 5-S Epileptic EEG Recordings Using Distribution Entropy and Sample Entropy
por: Li, Peng, et al.
Publicado: (2016) -
Approximate Entropy and Sample Entropy: A Comprehensive Tutorial
por: Delgado-Bonal, Alfonso, et al.
Publicado: (2019) -
On Quantization Errors in Approximate and Sample Entropy
por: Bajić, Dragana, et al.
Publicado: (2021)