Cargando…
Interfacial Self-Assembly and Oriented Attachment in the Family of PbX (X = S, Se, Te) Nanocrystals
[Image: see text] The realization of materials with new optoelectronic properties draws much scientific attention toward the field of nanocrystal superstructures. Low-dimensional superstructures created by interfacial assembly and oriented attachment of PbSe nanocrystals are a striking example becau...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2018
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6004561/ https://www.ncbi.nlm.nih.gov/pubmed/29930743 http://dx.doi.org/10.1021/acs.jpcc.8b01876 |
Sumario: | [Image: see text] The realization of materials with new optoelectronic properties draws much scientific attention toward the field of nanocrystal superstructures. Low-dimensional superstructures created by interfacial assembly and oriented attachment of PbSe nanocrystals are a striking example because theory showed that PbSe sheets with a honeycomb geometry possess non-trivial flat bands and Dirac cones in the valence and conduction bands. Here, we report on the formation of one-dimensional linear and zigzag structures and two-dimensional (2D) square and honeycomb structures for the entire lead chalcogenide family: PbX (X = S, Se, Te). We observe that PbTe, with a lower bulk melting temperature and enthalpy of formation than those of PbSe, shows a higher nanocrystal surface reactivity, such that the surface must be passivated and the reaction conditions moderated to obtain reasonably ordered superstructures. The present findings constitute a step forward in the realization of a larger family of atomically coherent 2D superstructures with variable IV–VI and II–VI compositions and with electronic properties dictated by the nanogeometry. |
---|