Cargando…
Cardamonin reduces chemotherapy resistance of colon cancer cells via the TSP50/NF-κB pathway in vitro
It has previously been reported that cardamonin is able to regulate glycometabolism and vasodilation whilst also exhibiting anti-inflammatory and antitumor properties. The antitumor effect of cardamonin is multifaceted, and so it is necessary to investigate the antitumor mechanisms of cardamonin at...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6004643/ https://www.ncbi.nlm.nih.gov/pubmed/29928339 http://dx.doi.org/10.3892/ol.2018.8580 |
Sumario: | It has previously been reported that cardamonin is able to regulate glycometabolism and vasodilation whilst also exhibiting anti-inflammatory and antitumor properties. The antitumor effect of cardamonin is multifaceted, and so it is necessary to investigate the antitumor mechanisms of cardamonin at the molecular level. Cardamonin alters chemotherapy-resistant colon cancer cell growth; however, the underlying mechanism is unknown. The present study was conducted to investigate the effect of cardamonin on chemotherapy-resistant colon cancer cells and the possible mechanisms of action. Cardamonin significantly suppressed the growth of chemotherapy-resistant colon cancer cells, induced apoptosis and promoted caspase-3/9 activity and Bax protein expression in 5-fluorouracil (5-FU)-resistant HCT-116 cells. Cardamonin significantly suppressed c-MYC, octamer-binding transcription factor 4, cyclin E, testes-specific protease 50 and nuclear factor-κB protein expression in 5-FU-resistant HCT-116 cells. The findings of the present study demonstrate that cardamonin suppresses chemotherapy-colon cancer cell via the NF-κB pathway in vitro. |
---|