Cargando…

Classification of single-channel EEG signals for epileptic seizures detection based on hybrid features

BACKGROUND: Epilepsy is a common chronic neurological disorder of the brain. Clinically, epileptic seizures are usually detected via the continuous monitoring of electroencephalogram (EEG) signals by experienced neurophysiologists. OBJECTIVE: In order to detect epileptic seizures automatically with...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Yanan, Ma, Yu, Chen, Chen, Wang, Yuanyuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: IOS Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6004942/
https://www.ncbi.nlm.nih.gov/pubmed/29710759
http://dx.doi.org/10.3233/THC-174679
Descripción
Sumario:BACKGROUND: Epilepsy is a common chronic neurological disorder of the brain. Clinically, epileptic seizures are usually detected via the continuous monitoring of electroencephalogram (EEG) signals by experienced neurophysiologists. OBJECTIVE: In order to detect epileptic seizures automatically with a satisfactory precision, a new method is proposed which defines hybrid features that could characterize the epileptiform waves and classify single-channel EEG signals. METHODS: The hybrid features consist of both the ones usually used in EEG signal analysis and the Kraskov entropy based on Hilbert-Huang Transform which is proposed for the first time. With the hybrid features, EEG signals are classified and the epileptic seizures are detected. RESULTS: Three datasets are used for test on three binary-classification problems defined by clinical requirements for epileptic seizures detection. Experimental results show that the accuracy, sensitivity and specificity of the proposed methods outperform two state-of-the-art methods, especially on the databases containing signals from different sources. CONCLUSIONS: The proposed method provides a new avenue to assist neurophysiologists in diagnosing epileptic seizures automatically and accurately.