Cargando…

Effect of 405 nm low intensity irradiation on the absorption spectrum of in-vitro hyperlipidemia blood

BACKGROUND: Laser therapy is reported to be clinically effective for improving microcirculation, rheological properties and blood lipid profiles despite the lack of certainty on the mechanism. OBJECTIVE: This study intends to provide methods to drop blood lipid level of hyperlipidemia samples by low...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Hong, Liu, Weichao, Fang, Xiang, Wang, Haichen, Ma, Wenjiang, Dong, Huajiang, Yin, Huijuan, Li, Ying-Xin, Sha, Hong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: IOS Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6004948/
https://www.ncbi.nlm.nih.gov/pubmed/29710746
http://dx.doi.org/10.3233/THC-174302
Descripción
Sumario:BACKGROUND: Laser therapy is reported to be clinically effective for improving microcirculation, rheological properties and blood lipid profiles despite the lack of certainty on the mechanism. OBJECTIVE: This study intends to provide methods to drop blood lipid level of hyperlipidemia samples by low-intensity laser irradiation therapy and provide reasoning of mechanism. METHODS: Twenty whole blood samples of high level of lipids profile are irradiated by 405 nm low-intensity laser at 12 J/cm [Formula: see text] twice a day for 3 days and compared with normal lipids profile group. Then whole blood sample are centrifuged to obtain result of erythrocyte for further interpretation. Multi-scan spectrum microplate reader is used to measure absorption spectrum and data is analyzed by software SPSS 14.0. RESULTS: Results show that after 405 nm low-intensity laser irradiation, whole blood samples of high lipid level statistically have higher absorbance peak value than normal samples while erythrocyte samples have lower absorbance peak value. CONCLUSIONS: From the divergence of absorption peak value change after low-intensity laser irradiation for whole blood sample and erythrocyte, we suspect that low level laser irradiation affects the enzymes activity of lipid metabolism, improves the cholesterol balance of plasma and cytoplasm in erythrocyte, and decreases aggregation of the erythrocyte.