Cargando…
Human emotion classification based on multiple physiological signals by wearable system
BACKGROUND: Human emotion classification is traditionally achieved using multi-channel electroencephalogram (EEG) signal, which requires costly equipment and complex classification algorithms. OBJECTIVE: The experiments can be implemented in the laboratory environment equipped with high-performance...
Autores principales: | Liu, Xin, Wang, Qisong, Liu, Dan, Wang, Yuan, Zhang, Yan, Bai, Ou, Sun, Jinwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
IOS Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6004961/ https://www.ncbi.nlm.nih.gov/pubmed/29758969 http://dx.doi.org/10.3233/THC-174747 |
Ejemplares similares
-
Distribution Adaptation and Classification Framework Based on Multiple Kernel Learning for Motor Imagery BCI Illiteracy
por: Tao, Lin, et al.
Publicado: (2022) -
Multi-subject subspace alignment for non-stationary EEG-based emotion recognition
por: Chai, Xin, et al.
Publicado: (2018) -
A Fast, Efficient Domain Adaptation Technique for Cross-Domain Electroencephalography(EEG)-Based Emotion Recognition
por: Chai, Xin, et al.
Publicado: (2017) -
A Multifunctional Sensor in Ternary Solution Using Canonical Correlations for Variable Links Assessment
por: Liu, Dan, et al.
Publicado: (2016) -
Evoked Hemodynamic Response Estimation to Auditory Stimulus Using Recursive Least Squares Adaptive Filtering with Multidistance Measurement of Near-Infrared Spectroscopy
por: Zhang, Yan, et al.
Publicado: (2018)