Cargando…

Noise reduction algorithm with the soft thresholding based on the Shannon entropy and bone-conduction speech cross- correlation bands

BACKGROUND: The conventional methods of speech enhancement, noise reduction, and voice activity detection are based on the suppression of noise or non-speech components of the target air-conduction signals. However, air-conduced speech is hard to differentiate from babble or white noise signals. OBJ...

Descripción completa

Detalles Bibliográficos
Autores principales: Na, Sung Dae, Wei, Qun, Seong, Ki Woong, Cho, Jin Ho, Kim, Myoung Nam
Formato: Online Artículo Texto
Lenguaje:English
Publicado: IOS Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6004965/
https://www.ncbi.nlm.nih.gov/pubmed/29710756
http://dx.doi.org/10.3233/THC-174615
Descripción
Sumario:BACKGROUND: The conventional methods of speech enhancement, noise reduction, and voice activity detection are based on the suppression of noise or non-speech components of the target air-conduction signals. However, air-conduced speech is hard to differentiate from babble or white noise signals. OBJECTIVE: To overcome this problem, the proposed algorithm uses the bone-conduction speech signals and soft thresholding based on the Shannon entropy principle and cross-correlation of air- and bone-conduction signals. METHODS: A new algorithm for speech detection and noise reduction is proposed, which makes use of the Shannon entropy principle and cross-correlation with the bone-conduction speech signals to threshold the wavelet packet coefficients of the noisy speech. RESULTS: The proposed method can be get efficient result by objective quality measure that are PESQ, RMSE, Correlation, SNR. CONCLUSION: Each threshold is generated by the entropy and cross-correlation approaches in the decomposed bands using the wavelet packet decomposition. As a result, the noise is reduced by the proposed method using the MATLAB simulation. To verify the method feasibility, we compared the air- and bone-conduction speech signals and their spectra by the proposed method. As a result, high performance of the proposed method is confirmed, which makes it quite instrumental to future applications in communication devices, noisy environment, construction, and military operations.