Cargando…
Multi-task fused sparse learning for mild cognitive impairment identification
BACKGROUND: Brain functional connectivity network (BFCN) has been widely applied to identify biomarkers for the brain function understanding and brain diseases analysis. OBJECTIVE: Building a biologically meaningful brain network is a crucial work in these applications. For this task, sparse learnin...
Autores principales: | Yang, Peng, Ni, Dong, Chen, Siping, Wang, Tianfu, Wu, Donghui, Lei, Baiying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
IOS Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6004967/ https://www.ncbi.nlm.nih.gov/pubmed/29710750 http://dx.doi.org/10.3233/THC-174587 |
Ejemplares similares
-
Longitudinal Analysis for Disease Progression via Simultaneous Multi-Relational Temporal-Fused Learning
por: Lei, Baiying, et al.
Publicado: (2017) -
Discriminative Learning for Alzheimer's Disease Diagnosis via Canonical Correlation Analysis and Multimodal Fusion
por: Lei, Baiying, et al.
Publicado: (2016) -
Discriminative Learning for Automatic Staging of Placental Maturity via Multi-layer Fisher Vector
por: Lei, Baiying, et al.
Publicado: (2015) -
Sparse feature learning for multi-class Parkinson’s disease classification
por: Lei, Haijun, et al.
Publicado: (2018) -
Multi-center sparse learning and decision fusion for automatic COVID-19 diagnosis
por: Huang, Zhongwei, et al.
Publicado: (2022)