Cargando…
Sparse feature learning for multi-class Parkinson’s disease classification
This paper solves the multi-class classification problem for Parkinson’s disease (PD) analysis by a sparse discriminative feature selection framework. Specifically, we propose a framework to construct a least square regression model based on the Fisher’s linear discriminant analysis (LDA) and locali...
Autores principales: | Lei, Haijun, Zhao, Yujia, Wen, Yuting, Luo, Qiuming, Cai, Ye, Liu, Gang, Lei, Baiying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
IOS Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6004973/ https://www.ncbi.nlm.nih.gov/pubmed/29710748 http://dx.doi.org/10.3233/THC-174548 |
Ejemplares similares
-
Joint regression and classification via relational regularization for Parkinson’s disease diagnosis
por: Lei, Haijun, et al.
Publicado: (2018) -
Multi-center sparse learning and decision fusion for automatic COVID-19 diagnosis
por: Huang, Zhongwei, et al.
Publicado: (2022) -
Multi-task fused sparse learning for mild cognitive impairment identification
por: Yang, Peng, et al.
Publicado: (2018) -
Improved Sparse Multi-Class SVM and Its Application for Gene Selection in Cancer Classification
por: Huang, Lingkang, et al.
Publicado: (2013) -
Sparse Detector Imaging Sensor with Two-Class Silhouette Classification
por: Russomanno, David, et al.
Publicado: (2008)