Cargando…
Multi-subject subspace alignment for non-stationary EEG-based emotion recognition
Emotion recognition based on EEG signals is a critical component in Human-Machine collaborative environments and psychiatric health diagnoses. However, EEG patterns have been found to vary across subjects due to user fatigue, different electrode placements, and varying impedances, etc. This problem...
Autores principales: | Chai, Xin, Wang, Qisong, Zhao, Yongping, Liu, Xin, Liu, Dan, Bai, Ou |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
IOS Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6004980/ https://www.ncbi.nlm.nih.gov/pubmed/29758967 http://dx.doi.org/10.3233/THC-174739 |
Ejemplares similares
-
A Fast, Efficient Domain Adaptation Technique for Cross-Domain Electroencephalography(EEG)-Based Emotion Recognition
por: Chai, Xin, et al.
Publicado: (2017) -
Removal of EOG Artifacts from EEG Recordings Using Stationary Subspace Analysis
por: Zeng, Hong, et al.
Publicado: (2014) -
EOG Artifact Correction from EEG Recording Using Stationary Subspace Analysis and Empirical Mode Decomposition
por: Zeng, Hong, et al.
Publicado: (2013) -
Weakly stationary random fields, invariant subspaces and applications
por: Mandrekar, Vidyadhar S, et al.
Publicado: (2017) -
Cross-Subject Emotion Recognition Using Fused Entropy Features of EEG
por: Zuo, Xin, et al.
Publicado: (2022)