Cargando…
Rough sets and Laplacian score based cost-sensitive feature selection
Cost-sensitive feature selection learning is an important preprocessing step in machine learning and data mining. Recently, most existing cost-sensitive feature selection algorithms are heuristic algorithms, which evaluate the importance of each feature individually and select features one by one. O...
Autores principales: | Yu, Shenglong, Zhao, Hong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6005488/ https://www.ncbi.nlm.nih.gov/pubmed/29912884 http://dx.doi.org/10.1371/journal.pone.0197564 |
Ejemplares similares
-
Unsupervised feature selection based on incremental forward iterative Laplacian score
por: Jiang, Jiefang, et al.
Publicado: (2022) -
Understanding and using rough set based feature selection
por: Raza, Muhammad Summair, et al.
Publicado: (2017) -
Understanding and using rough set based feature selection
por: Raza, Muhammad Summair, et al.
Publicado: (2019) -
Sensitivity Laplacian Ratio-Based Optimization of the Projection Selection for Diffuse Optical Tomography
por: Ebrahimpour, Anita, et al.
Publicado: (2020) -
Laplacian Scores-Based Feature Reduction in IoT Systems for Agricultural Monitoring and Decision-Making Support
por: Tsapparellas, Giorgos, et al.
Publicado: (2020)