Cargando…
Hierarchical closeness-based properties reveal cancer survivability and biomarker genes in molecular signaling networks
Specific molecular signaling networks underlie different cancer types and quantitative analyses on those cancer networks can provide useful information about cancer treatments. Their structural metrics can reveal survivability of cancer patients and be used to identify biomarker genes for early canc...
Autores principales: | Tran, Tien-Dzung, Kwon, Yung-Keun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6005509/ https://www.ncbi.nlm.nih.gov/pubmed/29912931 http://dx.doi.org/10.1371/journal.pone.0199109 |
Ejemplares similares
-
MORO: a Cytoscape app for relationship analysis between modularity and robustness in large-scale biological networks
por: Truong, Cong-Doan, et al.
Publicado: (2016) -
Identification of anticancer drug target genes using an outside competitive dynamics model on cancer signaling networks
por: Tran, Tien-Dzung, et al.
Publicado: (2021) -
Properties of Boolean dynamics by node classification using feedback loops in a network
por: Kwon, Yung-Keun
Publicado: (2016) -
Entropy Bounds for Hierarchical Molecular Networks
por: Dehmer, Matthias, et al.
Publicado: (2008) -
In Silico Pleiotropy Analysis in KEGG Signaling Networks Using a Boolean Network Model
por: Mazaya, Maulida, et al.
Publicado: (2022)