Cargando…

Sobolev’s embedding on time scales

For [Formula: see text] , the embeddings of Sobolev spaces [Formula: see text] of functions defined on an open subset of an arbitrary time scale [Formula: see text] , [Formula: see text] , endowed with the Lebesgue Δ-measure have been developed in (Agarwal et al. in Adv. Differ. Equ. 2006:38121, 200...

Descripción completa

Detalles Bibliográficos
Autores principales: Ahmad, Naveed, Baig, Hira Ashraf, ur Rahman, Ghaus, Shoaib Saleem, M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6006306/
https://www.ncbi.nlm.nih.gov/pubmed/30137731
http://dx.doi.org/10.1186/s13660-018-1730-y
Descripción
Sumario:For [Formula: see text] , the embeddings of Sobolev spaces [Formula: see text] of functions defined on an open subset of an arbitrary time scale [Formula: see text] , [Formula: see text] , endowed with the Lebesgue Δ-measure have been developed in (Agarwal et al. in Adv. Differ. Equ. 2006:38121, 2006) for [Formula: see text] and later generalized to arbitrary [Formula: see text] in (Su et al. in Dyn. Partial Differ. Equ. 12(3):241–263, 2015). In this article we present the embeddings of Sobolev spaces [Formula: see text] for [Formula: see text] and then, using these embeddings, we develop general Sobolev’s embedding for the Sobolev spaces [Formula: see text] on time scales, where k is a non-negative integer and [Formula: see text] .