Cargando…

miR-129 controls axonal regeneration via regulating insulin-like growth factor-1 in peripheral nerve injury

The microenvironment of peripheral nerve regeneration consists of multiple neurotrophic factors, adhesion molecules, and extracellular matrix molecules, secreted by unique glial cells in the peripheral nerve system (PNS)-Schwann cell (SCs). Following peripheral nerve injury (PNI), local IGF-1 produc...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Hui, Xue, Chengbin, Yao, Min, Wang, Hongkui, Zhang, Ping, Qian, Tianmei, Zhou, Songlin, Li, Shiying, Yu, Bin, Wang, Yongjun, Gu, Xiaosong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6006361/
https://www.ncbi.nlm.nih.gov/pubmed/29915198
http://dx.doi.org/10.1038/s41419-018-0760-1
Descripción
Sumario:The microenvironment of peripheral nerve regeneration consists of multiple neurotrophic factors, adhesion molecules, and extracellular matrix molecules, secreted by unique glial cells in the peripheral nerve system (PNS)-Schwann cell (SCs). Following peripheral nerve injury (PNI), local IGF-1 production is upregulated in SCs and denervated muscle during axonal sprouting and regeneration. Regulation of IGF-1/IGF-1R signaling is considered as a potentially targeted therapy of PNI. We previously identified a group of novel miRNAs in proximal nerve following rat sciatic nerve transection. The present work focused on the role of miR-129 in regulation of IGF-1 signaling after sciatic nerve injury. The temporal change profile of the miR-129 expression was negatively correlated with the IGF-1 expression in proximal nerve stump and dorsal root ganglion (DRG) following sciatic nerve transection. An increased expression of miR-129 inhibited proliferation and migration of SCs, and axonal outgrowth of DRG neurons, which was inversely promoted by silencing of the miR-129 expression. The IGF-1 was identified as one of the multiple target genes of miR-129, which exerted negative regulation of IGF-1 by translational suppression. Moreover, knockdown of IGF-1 attenuated the promoting effects of miR-129 inhibitor on proliferation and migration of SCs, and neurite outgrowth of DRG neurons. Overall, our data indicated that miR-129 own the potential to regulate the proliferation and migration of SCs by targeting IGF-1, providing further insight into the regulatory role of miRNAs in peripheral nerve regeneration. The present work not only provides new insight into miR-129 regulation of peripheral nerve regeneration by robust phenotypic modulation of neural cells, but also opens a novel therapeutic window for PNI by mediating IGF-1 production. Our results may provide further experimental basis for translation of the molecular therapy into the clinic.