Cargando…

Knockdown of p57 gene inhibits breast cancer cell proliferation

The aim of the study was to investigate possible effects of p57 on the growth of the human MCF-7 and rat SHZ-88 breast cancer cell lines. Specific oligonucleotide sequences containing small hairpin structure were inserted into a small interfering RNA (siRNA) expression vector. The human MCF-7 and ra...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Tai Ping, Wang, Xin Liang, Han, Yi Min
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6006381/
https://www.ncbi.nlm.nih.gov/pubmed/29928386
http://dx.doi.org/10.3892/ol.2018.8605
Descripción
Sumario:The aim of the study was to investigate possible effects of p57 on the growth of the human MCF-7 and rat SHZ-88 breast cancer cell lines. Specific oligonucleotide sequences containing small hairpin structure were inserted into a small interfering RNA (siRNA) expression vector. The human MCF-7 and rat SHZ-88 breast cancer cell lines were transfected with recombinant plasmids. The p57 gene expression was blocked in the human MCF-7 breast and rat SHZ-88 breast cancer cells, using chemically modified siRNA. The p57 expression level was evaluated using quantitative polymerase chain reaction (qPCR) and western blot analysis. Immunofluorescence was conducted to detect p57 expression in the breast cancer cells. Tetrazolium blue (MTT) method was employed to detect the effect of p57 inhibition on the proliferation of the MCF-7 and SHZ-88 cell lines. Cell proliferation in the experimental group was significantly reduced. Immunofluorescence assay results showed p57 siRNA effectively inhibited the p57 level in the MCF-7 and SHZ-88 cells. RT-PCR results showed that 48 h after transfection, the p57 mRNA level in the transfected group was significantly lower compared with the control group. In conclusion, p57 effectively inhibited the proliferation of breast cancer after stable interference.