Cargando…
Predicting drug-disease associations by using similarity constrained matrix factorization
BACKGROUND: Drug-disease associations provide important information for the drug discovery. Wet experiments that identify drug-disease associations are time-consuming and expensive. However, many drug-disease associations are still unobserved or unknown. The development of computational methods for...
Autores principales: | Zhang, Wen, Yue, Xiang, Lin, Weiran, Wu, Wenjian, Liu, Ruoqi, Huang, Feng, Liu, Feng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6006580/ https://www.ncbi.nlm.nih.gov/pubmed/29914348 http://dx.doi.org/10.1186/s12859-018-2220-4 |
Ejemplares similares
-
SCMFMDA: Predicting microRNA-disease associations based on similarity constrained matrix factorization
por: Li, Lei, et al.
Publicado: (2021) -
MDSCMF: Matrix Decomposition and Similarity-Constrained Matrix Factorization for miRNA–Disease Association Prediction
por: Ni, Jiancheng, et al.
Publicado: (2022) -
Drug repositioning based on similarity constrained probabilistic matrix factorization: COVID-19 as a case study
por: Meng, Yajie, et al.
Publicado: (2021) -
Computational drug repositioning using similarity constrained weight regularization matrix factorization: A case of COVID‐19
por: Xu, Junlin, et al.
Publicado: (2022) -
Adjacency-constrained hierarchical clustering of a band similarity matrix with application to genomics
por: Ambroise, Christophe, et al.
Publicado: (2019)