Cargando…
Complexity Analysis of Iterative Basis Transformations Applied to Event-Based Signals
This paper introduces an event-based methodology to perform arbitrary linear basis transformations that encompass a broad range of practically important signal transforms, such as the discrete Fourier transform (DFT) and the discrete wavelet transform (DWT). We present a complexity analysis of the p...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6006676/ https://www.ncbi.nlm.nih.gov/pubmed/29946231 http://dx.doi.org/10.3389/fnins.2018.00373 |
Sumario: | This paper introduces an event-based methodology to perform arbitrary linear basis transformations that encompass a broad range of practically important signal transforms, such as the discrete Fourier transform (DFT) and the discrete wavelet transform (DWT). We present a complexity analysis of the proposed method, and show that the amount of required multiply-and-accumulate operations is reduced in comparison to frame-based method in natural video sequences, when the required temporal resolution is high enough. Experimental results on natural video sequences acquired by the asynchronous time-based neuromorphic image sensor (ATIS) are provided to support the feasibility of the method, and to illustrate the gain in computation resources. |
---|