Cargando…
Evaluating methods of inferring gene regulatory networks highlights their lack of performance for single cell gene expression data
BACKGROUND: A fundamental fact in biology states that genes do not operate in isolation, and yet, methods that infer regulatory networks for single cell gene expression data have been slow to emerge. With single cell sequencing methods now becoming accessible, general network inference algorithms th...
Autores principales: | Chen, Shuonan, Mar, Jessica C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6006753/ https://www.ncbi.nlm.nih.gov/pubmed/29914350 http://dx.doi.org/10.1186/s12859-018-2217-z |
Ejemplares similares
-
Benchmarking Gene Regulatory Network Inference Methods on Simulated and Experimental Data
por: Saint-Antoine, Michael, et al.
Publicado: (2023) -
Evaluating the Reproducibility of Single-Cell Gene Regulatory Network Inference Algorithms
por: Kang, Yoonjee, et al.
Publicado: (2021) -
An algebra-based method for inferring gene regulatory networks
por: Vera-Licona, Paola, et al.
Publicado: (2014) -
Ensemble Inference and Inferability of Gene Regulatory Networks
por: Ud-Dean, S. M. Minhaz, et al.
Publicado: (2014) -
KBoost: a new method to infer gene regulatory networks from gene expression data
por: Iglesias-Martinez, Luis F., et al.
Publicado: (2021)