Cargando…
Identification of H3K4me1-Associated Proteins at Mammalian Enhancers
Enhancers act to regulate cell type specific gene expression by facilitating the transcription of target genes. In mammalian cells active or primed enhancers are commonly marked by monomethylation of Histone H3 at lysine 4 (H3K4me1) in a cell-type specific manner. Whether and how this histone modifi...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6007000/ https://www.ncbi.nlm.nih.gov/pubmed/29255264 http://dx.doi.org/10.1038/s41588-017-0015-6 |
Sumario: | Enhancers act to regulate cell type specific gene expression by facilitating the transcription of target genes. In mammalian cells active or primed enhancers are commonly marked by monomethylation of Histone H3 at lysine 4 (H3K4me1) in a cell-type specific manner. Whether and how this histone modification regulates enhancer-dependent transcription programs in mammals is unclear. In this study, we conducted SILAC Mass-spec experiments with mono-nucleosomes and identified multiple H3K4me1 associated proteins, including many involved in chromatin remodeling. We demonstrate that H3K4me1 augments the association of the chromatin remodeling complex BAF to enhancers in vivo and that in vitro, H3K4me1 nucleosomes are more efficiently remodeled by the BAF complex. Crystal structures of BAF component BAF45c reveal that monomethylation, but not trimethylation, is accommodated by BAF45c’s H3K4 binding site. Our results suggest that H3K4me1 plays an active role at enhancers by facilitating the binding of the BAF complex and possibly other chromatin regulators. |
---|