Cargando…
Neuron-specific regulation of superoxide dismutase amid pathogen-induced gut dysbiosis
Superoxide dismutase, an enzyme that converts superoxide into less-toxic hydrogen peroxide and oxygen, has been shown to mediate behavioral response to pathogens. However, it remains largely unknown how superoxide dismutase is regulated in the nervous system amid pathogen-induced gut dysbiosis. Alth...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6007053/ https://www.ncbi.nlm.nih.gov/pubmed/29857312 http://dx.doi.org/10.1016/j.redox.2018.05.007 |
Sumario: | Superoxide dismutase, an enzyme that converts superoxide into less-toxic hydrogen peroxide and oxygen, has been shown to mediate behavioral response to pathogens. However, it remains largely unknown how superoxide dismutase is regulated in the nervous system amid pathogen-induced gut dysbiosis. Although there are five superoxide dismutases in C. elegans, our genetic analyses suggest that SOD-1 is the primary superoxide dismutase to mediate the pathogen avoidance response. When C. elegans are fed a P. aeruginosa diet, the lack of SOD-1 contributes to enhanced lethality. We found that guanylyl cyclases GCY-5 and GCY-22 and neuropeptide receptor NPR-1 act antagonistically to regulate SOD-1 expression in the gustatory neuron ASER. After C. elegans ingests a diet that contributes to high levels of oxidative stress, the temporal regulation of SOD-1 and the SOD-1–dependent response in the gustatory system demonstrates a sophisticated mechanism to fine-tune behavioral plasticity. Our results may provide the initial glimpse of a strategy by which a multicellular organism copes with oxidative stress amid gut dysbiosis. |
---|