Cargando…
Ovine model of neuropathic pain for assessing mechanisms of spinal cord stimulation therapy via dorsal horn recordings, von Frey filaments, and gait analysis
BACKGROUND: It is becoming increasingly important to understand the mechanisms of spinal cord stimulation (SCS) in alleviating neuropathic pain as novel stimulation paradigms arise. PURPOSE: Additionally, the small anatomic scale of current SCS animal models is a barrier to more translational resear...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6007193/ https://www.ncbi.nlm.nih.gov/pubmed/29942150 http://dx.doi.org/10.2147/JPR.S139843 |
_version_ | 1783332988805709824 |
---|---|
author | Reddy, Chandan G Miller, John W Abode-Iyamah, Kingsley O Safayi, Sina Wilson, Saul Dalm, Brian D Fredericks, Douglas C Gillies, George T Howard, Matthew A Brennan, Timothy J |
author_facet | Reddy, Chandan G Miller, John W Abode-Iyamah, Kingsley O Safayi, Sina Wilson, Saul Dalm, Brian D Fredericks, Douglas C Gillies, George T Howard, Matthew A Brennan, Timothy J |
author_sort | Reddy, Chandan G |
collection | PubMed |
description | BACKGROUND: It is becoming increasingly important to understand the mechanisms of spinal cord stimulation (SCS) in alleviating neuropathic pain as novel stimulation paradigms arise. PURPOSE: Additionally, the small anatomic scale of current SCS animal models is a barrier to more translational research. METHODS: Using chronic constriction injury (CCI) of the common peroneal nerve (CPN) in sheep (ovine), we have created a chronic model of neuropathic pain that avoids motor deficits present in prior large animal models. This large animal model has allowed us to implant clinical grade SCS hardware, which enables both acute and chronic testing using von Frey filament thresholds and gait analysis. Furthermore, the larger anatomic scale of the sheep allows for simultaneous single-unit recordings from the dorsal horn and SCS with minimal electrical artifact. RESULTS: Detectable tactile hypersensitivity occurred 21 days after nerve injury, with preliminary indications that chronic SCS may reverse it in the painful limb. Gait analysis revealed no hoof drop in the CCI model. Single neurons were identified and discriminated in the dorsal horn, and their activity was modulated via SCS. Unlike previous large animal models that employed a complete transection of the nerve, no motor deficit was observed in the sheep with CCI. CONCLUSION: To our knowledge, this is the first reported large animal model of chronic neuropathic pain which facilitates the study of both acute and chronic SCS using complementary behavioral and electrophysiologic measures. As demonstrated by our successful establishment of these techniques, an ovine model of neuropathic pain is suitable for testing the mechanisms of SCS. |
format | Online Article Text |
id | pubmed-6007193 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Dove Medical Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-60071932018-06-25 Ovine model of neuropathic pain for assessing mechanisms of spinal cord stimulation therapy via dorsal horn recordings, von Frey filaments, and gait analysis Reddy, Chandan G Miller, John W Abode-Iyamah, Kingsley O Safayi, Sina Wilson, Saul Dalm, Brian D Fredericks, Douglas C Gillies, George T Howard, Matthew A Brennan, Timothy J J Pain Res Original Research BACKGROUND: It is becoming increasingly important to understand the mechanisms of spinal cord stimulation (SCS) in alleviating neuropathic pain as novel stimulation paradigms arise. PURPOSE: Additionally, the small anatomic scale of current SCS animal models is a barrier to more translational research. METHODS: Using chronic constriction injury (CCI) of the common peroneal nerve (CPN) in sheep (ovine), we have created a chronic model of neuropathic pain that avoids motor deficits present in prior large animal models. This large animal model has allowed us to implant clinical grade SCS hardware, which enables both acute and chronic testing using von Frey filament thresholds and gait analysis. Furthermore, the larger anatomic scale of the sheep allows for simultaneous single-unit recordings from the dorsal horn and SCS with minimal electrical artifact. RESULTS: Detectable tactile hypersensitivity occurred 21 days after nerve injury, with preliminary indications that chronic SCS may reverse it in the painful limb. Gait analysis revealed no hoof drop in the CCI model. Single neurons were identified and discriminated in the dorsal horn, and their activity was modulated via SCS. Unlike previous large animal models that employed a complete transection of the nerve, no motor deficit was observed in the sheep with CCI. CONCLUSION: To our knowledge, this is the first reported large animal model of chronic neuropathic pain which facilitates the study of both acute and chronic SCS using complementary behavioral and electrophysiologic measures. As demonstrated by our successful establishment of these techniques, an ovine model of neuropathic pain is suitable for testing the mechanisms of SCS. Dove Medical Press 2018-06-15 /pmc/articles/PMC6007193/ /pubmed/29942150 http://dx.doi.org/10.2147/JPR.S139843 Text en © 2018 Reddy et al. This work is published and licensed by Dove Medical Press Limited The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. |
spellingShingle | Original Research Reddy, Chandan G Miller, John W Abode-Iyamah, Kingsley O Safayi, Sina Wilson, Saul Dalm, Brian D Fredericks, Douglas C Gillies, George T Howard, Matthew A Brennan, Timothy J Ovine model of neuropathic pain for assessing mechanisms of spinal cord stimulation therapy via dorsal horn recordings, von Frey filaments, and gait analysis |
title | Ovine model of neuropathic pain for assessing mechanisms of spinal cord stimulation therapy via dorsal horn recordings, von Frey filaments, and gait analysis |
title_full | Ovine model of neuropathic pain for assessing mechanisms of spinal cord stimulation therapy via dorsal horn recordings, von Frey filaments, and gait analysis |
title_fullStr | Ovine model of neuropathic pain for assessing mechanisms of spinal cord stimulation therapy via dorsal horn recordings, von Frey filaments, and gait analysis |
title_full_unstemmed | Ovine model of neuropathic pain for assessing mechanisms of spinal cord stimulation therapy via dorsal horn recordings, von Frey filaments, and gait analysis |
title_short | Ovine model of neuropathic pain for assessing mechanisms of spinal cord stimulation therapy via dorsal horn recordings, von Frey filaments, and gait analysis |
title_sort | ovine model of neuropathic pain for assessing mechanisms of spinal cord stimulation therapy via dorsal horn recordings, von frey filaments, and gait analysis |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6007193/ https://www.ncbi.nlm.nih.gov/pubmed/29942150 http://dx.doi.org/10.2147/JPR.S139843 |
work_keys_str_mv | AT reddychandang ovinemodelofneuropathicpainforassessingmechanismsofspinalcordstimulationtherapyviadorsalhornrecordingsvonfreyfilamentsandgaitanalysis AT millerjohnw ovinemodelofneuropathicpainforassessingmechanismsofspinalcordstimulationtherapyviadorsalhornrecordingsvonfreyfilamentsandgaitanalysis AT abodeiyamahkingsleyo ovinemodelofneuropathicpainforassessingmechanismsofspinalcordstimulationtherapyviadorsalhornrecordingsvonfreyfilamentsandgaitanalysis AT safayisina ovinemodelofneuropathicpainforassessingmechanismsofspinalcordstimulationtherapyviadorsalhornrecordingsvonfreyfilamentsandgaitanalysis AT wilsonsaul ovinemodelofneuropathicpainforassessingmechanismsofspinalcordstimulationtherapyviadorsalhornrecordingsvonfreyfilamentsandgaitanalysis AT dalmbriand ovinemodelofneuropathicpainforassessingmechanismsofspinalcordstimulationtherapyviadorsalhornrecordingsvonfreyfilamentsandgaitanalysis AT fredericksdouglasc ovinemodelofneuropathicpainforassessingmechanismsofspinalcordstimulationtherapyviadorsalhornrecordingsvonfreyfilamentsandgaitanalysis AT gilliesgeorget ovinemodelofneuropathicpainforassessingmechanismsofspinalcordstimulationtherapyviadorsalhornrecordingsvonfreyfilamentsandgaitanalysis AT howardmatthewa ovinemodelofneuropathicpainforassessingmechanismsofspinalcordstimulationtherapyviadorsalhornrecordingsvonfreyfilamentsandgaitanalysis AT brennantimothyj ovinemodelofneuropathicpainforassessingmechanismsofspinalcordstimulationtherapyviadorsalhornrecordingsvonfreyfilamentsandgaitanalysis |