Cargando…

Unfolding the Mysteries of Protein Metamorphosis

[Image: see text] Since the proposal of Anfinsen’s thermodynamic hypothesis in 1963, our understanding of protein folding and dynamics has gained significant appreciation of its nuance and complexity. Intrinsically disordered proteins, chameleonic sequences, morpheeins, and metamorphic proteins have...

Descripción completa

Detalles Bibliográficos
Autores principales: Dishman, Acacia F., Volkman, Brian F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2018
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6007232/
https://www.ncbi.nlm.nih.gov/pubmed/29787234
http://dx.doi.org/10.1021/acschembio.8b00276
Descripción
Sumario:[Image: see text] Since the proposal of Anfinsen’s thermodynamic hypothesis in 1963, our understanding of protein folding and dynamics has gained significant appreciation of its nuance and complexity. Intrinsically disordered proteins, chameleonic sequences, morpheeins, and metamorphic proteins have broadened the protein folding paradigm. Here, we discuss noncanonical protein folding patterns, with an emphasis on metamorphic proteins, and we review known metamorphic proteins that occur naturally and that have been engineered in the laboratory. Finally, we discuss research areas surrounding metamorphic proteins that are primed for future exploration, including evolution, drug discovery, and the quest for previously unrecognized metamorphs. As we enter an age where we are capable of complex bioinformatic searches and de novo protein design, we are primed to search for previously unrecognized metamorphic proteins and to design our own metamorphs to act as targeted, switchable drugs; biosensors; and more.