Cargando…
Tetramerization of MADS family transcription factors SEPALLATA3 and AGAMOUS is required for floral meristem determinacy in Arabidopsis
The MADS transcription factors (TF) constitute an ancient family of TF found in all eukaryotes that bind DNA as obligate dimers. Plants have dramatically expanded the functional diversity of the MADS family during evolution by adding protein–protein interaction domains to the core DNA-binding domain...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6007258/ https://www.ncbi.nlm.nih.gov/pubmed/29562355 http://dx.doi.org/10.1093/nar/gky205 |
_version_ | 1783333002690953216 |
---|---|
author | Hugouvieux, Véronique Silva, Catarina S Jourdain, Agnès Stigliani, Arnaud Charras, Quentin Conn, Vanessa Conn, Simon J Carles, Cristel C Parcy, François Zubieta, Chloe |
author_facet | Hugouvieux, Véronique Silva, Catarina S Jourdain, Agnès Stigliani, Arnaud Charras, Quentin Conn, Vanessa Conn, Simon J Carles, Cristel C Parcy, François Zubieta, Chloe |
author_sort | Hugouvieux, Véronique |
collection | PubMed |
description | The MADS transcription factors (TF) constitute an ancient family of TF found in all eukaryotes that bind DNA as obligate dimers. Plants have dramatically expanded the functional diversity of the MADS family during evolution by adding protein–protein interaction domains to the core DNA-binding domain, allowing the formation of heterotetrameric complexes. Tetramerization of plant MADS TFs is believed to play a central role in the evolution of higher plants by acting as one of the main determinants of flower formation and floral organ specification. The MADS TF, SEPALLATA3 (SEP3), functions as a central protein–protein interaction hub, driving tetramerization with other MADS TFs. Here, we use a SEP3 splice variant, SEP3(Δtet), which has dramatically abrogated tetramerization capacity to decouple SEP3 tetramerization and DNA-binding activities. We unexpectedly demonstrate that SEP3 heterotetramer formation is required for correct termination of the floral meristem, but plays a lesser role in floral organogenesis. The heterotetramer formed by SEP3 and the MADS protein, AGAMOUS, is necessary to activate two target genes, KNUCKLES and CRABSCLAW, which are required for meristem determinacy. These studies reveal unique and highly specific roles of tetramerization in flower development and suggest tetramerization may be required to activate only a subset of target genes in closed chromatin regions. |
format | Online Article Text |
id | pubmed-6007258 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-60072582018-06-25 Tetramerization of MADS family transcription factors SEPALLATA3 and AGAMOUS is required for floral meristem determinacy in Arabidopsis Hugouvieux, Véronique Silva, Catarina S Jourdain, Agnès Stigliani, Arnaud Charras, Quentin Conn, Vanessa Conn, Simon J Carles, Cristel C Parcy, François Zubieta, Chloe Nucleic Acids Res Gene regulation, Chromatin and Epigenetics The MADS transcription factors (TF) constitute an ancient family of TF found in all eukaryotes that bind DNA as obligate dimers. Plants have dramatically expanded the functional diversity of the MADS family during evolution by adding protein–protein interaction domains to the core DNA-binding domain, allowing the formation of heterotetrameric complexes. Tetramerization of plant MADS TFs is believed to play a central role in the evolution of higher plants by acting as one of the main determinants of flower formation and floral organ specification. The MADS TF, SEPALLATA3 (SEP3), functions as a central protein–protein interaction hub, driving tetramerization with other MADS TFs. Here, we use a SEP3 splice variant, SEP3(Δtet), which has dramatically abrogated tetramerization capacity to decouple SEP3 tetramerization and DNA-binding activities. We unexpectedly demonstrate that SEP3 heterotetramer formation is required for correct termination of the floral meristem, but plays a lesser role in floral organogenesis. The heterotetramer formed by SEP3 and the MADS protein, AGAMOUS, is necessary to activate two target genes, KNUCKLES and CRABSCLAW, which are required for meristem determinacy. These studies reveal unique and highly specific roles of tetramerization in flower development and suggest tetramerization may be required to activate only a subset of target genes in closed chromatin regions. Oxford University Press 2018-06-01 2018-03-19 /pmc/articles/PMC6007258/ /pubmed/29562355 http://dx.doi.org/10.1093/nar/gky205 Text en © The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Gene regulation, Chromatin and Epigenetics Hugouvieux, Véronique Silva, Catarina S Jourdain, Agnès Stigliani, Arnaud Charras, Quentin Conn, Vanessa Conn, Simon J Carles, Cristel C Parcy, François Zubieta, Chloe Tetramerization of MADS family transcription factors SEPALLATA3 and AGAMOUS is required for floral meristem determinacy in Arabidopsis |
title | Tetramerization of MADS family transcription factors SEPALLATA3 and AGAMOUS is required for floral meristem determinacy in Arabidopsis |
title_full | Tetramerization of MADS family transcription factors SEPALLATA3 and AGAMOUS is required for floral meristem determinacy in Arabidopsis |
title_fullStr | Tetramerization of MADS family transcription factors SEPALLATA3 and AGAMOUS is required for floral meristem determinacy in Arabidopsis |
title_full_unstemmed | Tetramerization of MADS family transcription factors SEPALLATA3 and AGAMOUS is required for floral meristem determinacy in Arabidopsis |
title_short | Tetramerization of MADS family transcription factors SEPALLATA3 and AGAMOUS is required for floral meristem determinacy in Arabidopsis |
title_sort | tetramerization of mads family transcription factors sepallata3 and agamous is required for floral meristem determinacy in arabidopsis |
topic | Gene regulation, Chromatin and Epigenetics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6007258/ https://www.ncbi.nlm.nih.gov/pubmed/29562355 http://dx.doi.org/10.1093/nar/gky205 |
work_keys_str_mv | AT hugouvieuxveronique tetramerizationofmadsfamilytranscriptionfactorssepallata3andagamousisrequiredforfloralmeristemdeterminacyinarabidopsis AT silvacatarinas tetramerizationofmadsfamilytranscriptionfactorssepallata3andagamousisrequiredforfloralmeristemdeterminacyinarabidopsis AT jourdainagnes tetramerizationofmadsfamilytranscriptionfactorssepallata3andagamousisrequiredforfloralmeristemdeterminacyinarabidopsis AT stiglianiarnaud tetramerizationofmadsfamilytranscriptionfactorssepallata3andagamousisrequiredforfloralmeristemdeterminacyinarabidopsis AT charrasquentin tetramerizationofmadsfamilytranscriptionfactorssepallata3andagamousisrequiredforfloralmeristemdeterminacyinarabidopsis AT connvanessa tetramerizationofmadsfamilytranscriptionfactorssepallata3andagamousisrequiredforfloralmeristemdeterminacyinarabidopsis AT connsimonj tetramerizationofmadsfamilytranscriptionfactorssepallata3andagamousisrequiredforfloralmeristemdeterminacyinarabidopsis AT carlescristelc tetramerizationofmadsfamilytranscriptionfactorssepallata3andagamousisrequiredforfloralmeristemdeterminacyinarabidopsis AT parcyfrancois tetramerizationofmadsfamilytranscriptionfactorssepallata3andagamousisrequiredforfloralmeristemdeterminacyinarabidopsis AT zubietachloe tetramerizationofmadsfamilytranscriptionfactorssepallata3andagamousisrequiredforfloralmeristemdeterminacyinarabidopsis |