Cargando…

1399 H&E-stained sentinel lymph node sections of breast cancer patients: the CAMELYON dataset

BACKGROUND: The presence of lymph node metastases is one of the most important factors in breast cancer prognosis. The most common way to assess regional lymph node status is the sentinel lymph node procedure. The sentinel lymph node is the most likely lymph node to contain metastasized cancer cells...

Descripción completa

Detalles Bibliográficos
Autores principales: Litjens, Geert, Bandi, Peter, Ehteshami Bejnordi, Babak, Geessink, Oscar, Balkenhol, Maschenka, Bult, Peter, Halilovic, Altuna, Hermsen, Meyke, van de Loo, Rob, Vogels, Rob, Manson, Quirine F, Stathonikos, Nikolas, Baidoshvili, Alexi, van Diest, Paul, Wauters, Carla, van Dijk, Marcory, van der Laak, Jeroen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6007545/
https://www.ncbi.nlm.nih.gov/pubmed/29860392
http://dx.doi.org/10.1093/gigascience/giy065
_version_ 1783333059580395520
author Litjens, Geert
Bandi, Peter
Ehteshami Bejnordi, Babak
Geessink, Oscar
Balkenhol, Maschenka
Bult, Peter
Halilovic, Altuna
Hermsen, Meyke
van de Loo, Rob
Vogels, Rob
Manson, Quirine F
Stathonikos, Nikolas
Baidoshvili, Alexi
van Diest, Paul
Wauters, Carla
van Dijk, Marcory
van der Laak, Jeroen
author_facet Litjens, Geert
Bandi, Peter
Ehteshami Bejnordi, Babak
Geessink, Oscar
Balkenhol, Maschenka
Bult, Peter
Halilovic, Altuna
Hermsen, Meyke
van de Loo, Rob
Vogels, Rob
Manson, Quirine F
Stathonikos, Nikolas
Baidoshvili, Alexi
van Diest, Paul
Wauters, Carla
van Dijk, Marcory
van der Laak, Jeroen
author_sort Litjens, Geert
collection PubMed
description BACKGROUND: The presence of lymph node metastases is one of the most important factors in breast cancer prognosis. The most common way to assess regional lymph node status is the sentinel lymph node procedure. The sentinel lymph node is the most likely lymph node to contain metastasized cancer cells and is excised, histopathologically processed, and examined by a pathologist. This tedious examination process is time-consuming and can lead to small metastases being missed. However, recent advances in whole-slide imaging and machine learning have opened an avenue for analysis of digitized lymph node sections with computer algorithms. For example, convolutional neural networks, a type of machine-learning algorithm, can be used to automatically detect cancer metastases in lymph nodes with high accuracy. To train machine-learning models, large, well-curated datasets are needed. RESULTS: We released a dataset of 1,399 annotated whole-slide images (WSIs) of lymph nodes, both with and without metastases, in 3 terabytes of data in the context of the CAMELYON16 and CAMELYON17 Grand Challenges. Slides were collected from five medical centers to cover a broad range of image appearance and staining variations. Each WSI has a slide-level label indicating whether it contains no metastases, macro-metastases, micro-metastases, or isolated tumor cells. Furthermore, for 209 WSIs, detailed hand-drawn contours for all metastases are provided. Last, open-source software tools to visualize and interact with the data have been made available. CONCLUSIONS: A unique dataset of annotated, whole-slide digital histopathology images has been provided with high potential for re-use.
format Online
Article
Text
id pubmed-6007545
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-60075452018-07-05 1399 H&E-stained sentinel lymph node sections of breast cancer patients: the CAMELYON dataset Litjens, Geert Bandi, Peter Ehteshami Bejnordi, Babak Geessink, Oscar Balkenhol, Maschenka Bult, Peter Halilovic, Altuna Hermsen, Meyke van de Loo, Rob Vogels, Rob Manson, Quirine F Stathonikos, Nikolas Baidoshvili, Alexi van Diest, Paul Wauters, Carla van Dijk, Marcory van der Laak, Jeroen Gigascience Data Note BACKGROUND: The presence of lymph node metastases is one of the most important factors in breast cancer prognosis. The most common way to assess regional lymph node status is the sentinel lymph node procedure. The sentinel lymph node is the most likely lymph node to contain metastasized cancer cells and is excised, histopathologically processed, and examined by a pathologist. This tedious examination process is time-consuming and can lead to small metastases being missed. However, recent advances in whole-slide imaging and machine learning have opened an avenue for analysis of digitized lymph node sections with computer algorithms. For example, convolutional neural networks, a type of machine-learning algorithm, can be used to automatically detect cancer metastases in lymph nodes with high accuracy. To train machine-learning models, large, well-curated datasets are needed. RESULTS: We released a dataset of 1,399 annotated whole-slide images (WSIs) of lymph nodes, both with and without metastases, in 3 terabytes of data in the context of the CAMELYON16 and CAMELYON17 Grand Challenges. Slides were collected from five medical centers to cover a broad range of image appearance and staining variations. Each WSI has a slide-level label indicating whether it contains no metastases, macro-metastases, micro-metastases, or isolated tumor cells. Furthermore, for 209 WSIs, detailed hand-drawn contours for all metastases are provided. Last, open-source software tools to visualize and interact with the data have been made available. CONCLUSIONS: A unique dataset of annotated, whole-slide digital histopathology images has been provided with high potential for re-use. Oxford University Press 2018-05-31 /pmc/articles/PMC6007545/ /pubmed/29860392 http://dx.doi.org/10.1093/gigascience/giy065 Text en © The Author(s) 2018. Published by Oxford University Press. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Data Note
Litjens, Geert
Bandi, Peter
Ehteshami Bejnordi, Babak
Geessink, Oscar
Balkenhol, Maschenka
Bult, Peter
Halilovic, Altuna
Hermsen, Meyke
van de Loo, Rob
Vogels, Rob
Manson, Quirine F
Stathonikos, Nikolas
Baidoshvili, Alexi
van Diest, Paul
Wauters, Carla
van Dijk, Marcory
van der Laak, Jeroen
1399 H&E-stained sentinel lymph node sections of breast cancer patients: the CAMELYON dataset
title 1399 H&E-stained sentinel lymph node sections of breast cancer patients: the CAMELYON dataset
title_full 1399 H&E-stained sentinel lymph node sections of breast cancer patients: the CAMELYON dataset
title_fullStr 1399 H&E-stained sentinel lymph node sections of breast cancer patients: the CAMELYON dataset
title_full_unstemmed 1399 H&E-stained sentinel lymph node sections of breast cancer patients: the CAMELYON dataset
title_short 1399 H&E-stained sentinel lymph node sections of breast cancer patients: the CAMELYON dataset
title_sort 1399 h&e-stained sentinel lymph node sections of breast cancer patients: the camelyon dataset
topic Data Note
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6007545/
https://www.ncbi.nlm.nih.gov/pubmed/29860392
http://dx.doi.org/10.1093/gigascience/giy065
work_keys_str_mv AT litjensgeert 1399hestainedsentinellymphnodesectionsofbreastcancerpatientsthecamelyondataset
AT bandipeter 1399hestainedsentinellymphnodesectionsofbreastcancerpatientsthecamelyondataset
AT ehteshamibejnordibabak 1399hestainedsentinellymphnodesectionsofbreastcancerpatientsthecamelyondataset
AT geessinkoscar 1399hestainedsentinellymphnodesectionsofbreastcancerpatientsthecamelyondataset
AT balkenholmaschenka 1399hestainedsentinellymphnodesectionsofbreastcancerpatientsthecamelyondataset
AT bultpeter 1399hestainedsentinellymphnodesectionsofbreastcancerpatientsthecamelyondataset
AT halilovicaltuna 1399hestainedsentinellymphnodesectionsofbreastcancerpatientsthecamelyondataset
AT hermsenmeyke 1399hestainedsentinellymphnodesectionsofbreastcancerpatientsthecamelyondataset
AT vandeloorob 1399hestainedsentinellymphnodesectionsofbreastcancerpatientsthecamelyondataset
AT vogelsrob 1399hestainedsentinellymphnodesectionsofbreastcancerpatientsthecamelyondataset
AT mansonquirinef 1399hestainedsentinellymphnodesectionsofbreastcancerpatientsthecamelyondataset
AT stathonikosnikolas 1399hestainedsentinellymphnodesectionsofbreastcancerpatientsthecamelyondataset
AT baidoshvilialexi 1399hestainedsentinellymphnodesectionsofbreastcancerpatientsthecamelyondataset
AT vandiestpaul 1399hestainedsentinellymphnodesectionsofbreastcancerpatientsthecamelyondataset
AT wauterscarla 1399hestainedsentinellymphnodesectionsofbreastcancerpatientsthecamelyondataset
AT vandijkmarcory 1399hestainedsentinellymphnodesectionsofbreastcancerpatientsthecamelyondataset
AT vanderlaakjeroen 1399hestainedsentinellymphnodesectionsofbreastcancerpatientsthecamelyondataset