Cargando…
A posteriori error estimates of spectral method for nonlinear parabolic optimal control problem
In this paper, we investigate the spectral approximation of optimal control problem governed by nonlinear parabolic equations. A spectral approximation scheme for the nonlinear parabolic optimal control problem is presented. We construct a fully discrete spectral approximation scheme by using the ba...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6008391/ https://www.ncbi.nlm.nih.gov/pubmed/30137735 http://dx.doi.org/10.1186/s13660-018-1729-4 |
_version_ | 1783333163575017472 |
---|---|
author | Li, Lin Lu, Zuliang Zhang, Wei Huang, Fei Yang, Yin |
author_facet | Li, Lin Lu, Zuliang Zhang, Wei Huang, Fei Yang, Yin |
author_sort | Li, Lin |
collection | PubMed |
description | In this paper, we investigate the spectral approximation of optimal control problem governed by nonlinear parabolic equations. A spectral approximation scheme for the nonlinear parabolic optimal control problem is presented. We construct a fully discrete spectral approximation scheme by using the backward Euler scheme in time. Moreover, by using an orthogonal projection operator, we obtain [Formula: see text] a posteriori error estimates of the approximation solutions for both the state and the control. Finally, by introducing two auxiliary equations, we also obtain [Formula: see text] a posteriori error estimates of the approximation solutions for both the state and the control. |
format | Online Article Text |
id | pubmed-6008391 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-60083912018-07-04 A posteriori error estimates of spectral method for nonlinear parabolic optimal control problem Li, Lin Lu, Zuliang Zhang, Wei Huang, Fei Yang, Yin J Inequal Appl Research In this paper, we investigate the spectral approximation of optimal control problem governed by nonlinear parabolic equations. A spectral approximation scheme for the nonlinear parabolic optimal control problem is presented. We construct a fully discrete spectral approximation scheme by using the backward Euler scheme in time. Moreover, by using an orthogonal projection operator, we obtain [Formula: see text] a posteriori error estimates of the approximation solutions for both the state and the control. Finally, by introducing two auxiliary equations, we also obtain [Formula: see text] a posteriori error estimates of the approximation solutions for both the state and the control. Springer International Publishing 2018-06-19 2018 /pmc/articles/PMC6008391/ /pubmed/30137735 http://dx.doi.org/10.1186/s13660-018-1729-4 Text en © The Author(s) 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Research Li, Lin Lu, Zuliang Zhang, Wei Huang, Fei Yang, Yin A posteriori error estimates of spectral method for nonlinear parabolic optimal control problem |
title | A posteriori error estimates of spectral method for nonlinear parabolic optimal control problem |
title_full | A posteriori error estimates of spectral method for nonlinear parabolic optimal control problem |
title_fullStr | A posteriori error estimates of spectral method for nonlinear parabolic optimal control problem |
title_full_unstemmed | A posteriori error estimates of spectral method for nonlinear parabolic optimal control problem |
title_short | A posteriori error estimates of spectral method for nonlinear parabolic optimal control problem |
title_sort | posteriori error estimates of spectral method for nonlinear parabolic optimal control problem |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6008391/ https://www.ncbi.nlm.nih.gov/pubmed/30137735 http://dx.doi.org/10.1186/s13660-018-1729-4 |
work_keys_str_mv | AT lilin aposteriorierrorestimatesofspectralmethodfornonlinearparabolicoptimalcontrolproblem AT luzuliang aposteriorierrorestimatesofspectralmethodfornonlinearparabolicoptimalcontrolproblem AT zhangwei aposteriorierrorestimatesofspectralmethodfornonlinearparabolicoptimalcontrolproblem AT huangfei aposteriorierrorestimatesofspectralmethodfornonlinearparabolicoptimalcontrolproblem AT yangyin aposteriorierrorestimatesofspectralmethodfornonlinearparabolicoptimalcontrolproblem AT lilin posteriorierrorestimatesofspectralmethodfornonlinearparabolicoptimalcontrolproblem AT luzuliang posteriorierrorestimatesofspectralmethodfornonlinearparabolicoptimalcontrolproblem AT zhangwei posteriorierrorestimatesofspectralmethodfornonlinearparabolicoptimalcontrolproblem AT huangfei posteriorierrorestimatesofspectralmethodfornonlinearparabolicoptimalcontrolproblem AT yangyin posteriorierrorestimatesofspectralmethodfornonlinearparabolicoptimalcontrolproblem |