Cargando…

Covalent-supramolecular hybrid polymers as muscle-inspired anisotropic actuators

Skeletal muscle provides inspiration on how to achieve reversible, macroscopic, anisotropic motion in soft materials. Here we report on the bottom-up design of macroscopic tubes that exhibit anisotropic actuation driven by a thermal stimulus. The tube is built from a hydrogel in which extremely long...

Descripción completa

Detalles Bibliográficos
Autores principales: Chin, Stacey M., Synatschke, Christopher V., Liu, Shuangping, Nap, Rikkert J., Sather, Nicholas A., Wang, Qifeng, Álvarez, Zaida, Edelbrock, Alexandra N., Fyrner, Timmy, Palmer, Liam C., Szleifer, Igal, Olvera de la Cruz, Monica, Stupp, Samuel I.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6008453/
https://www.ncbi.nlm.nih.gov/pubmed/29921928
http://dx.doi.org/10.1038/s41467-018-04800-w
_version_ 1783333178109329408
author Chin, Stacey M.
Synatschke, Christopher V.
Liu, Shuangping
Nap, Rikkert J.
Sather, Nicholas A.
Wang, Qifeng
Álvarez, Zaida
Edelbrock, Alexandra N.
Fyrner, Timmy
Palmer, Liam C.
Szleifer, Igal
Olvera de la Cruz, Monica
Stupp, Samuel I.
author_facet Chin, Stacey M.
Synatschke, Christopher V.
Liu, Shuangping
Nap, Rikkert J.
Sather, Nicholas A.
Wang, Qifeng
Álvarez, Zaida
Edelbrock, Alexandra N.
Fyrner, Timmy
Palmer, Liam C.
Szleifer, Igal
Olvera de la Cruz, Monica
Stupp, Samuel I.
author_sort Chin, Stacey M.
collection PubMed
description Skeletal muscle provides inspiration on how to achieve reversible, macroscopic, anisotropic motion in soft materials. Here we report on the bottom-up design of macroscopic tubes that exhibit anisotropic actuation driven by a thermal stimulus. The tube is built from a hydrogel in which extremely long supramolecular nanofibers are aligned using weak shear forces, followed by radial growth of thermoresponsive polymers from their surfaces. The hierarchically ordered tube exhibits reversible anisotropic actuation with changes in temperature, with much greater contraction perpendicular to the direction of nanofiber alignment. We identify two critical factors for the anisotropic actuation, macroscopic alignment of the supramolecular scaffold and its covalent bonding to polymer chains. Using finite element analysis and molecular calculations, we conclude polymer chain confinement and mechanical reinforcement by rigid supramolecular nanofibers are responsible for the anisotropic actuation. The work reported suggests strategies to create soft active matter with molecularly encoded capacity to perform complex tasks.
format Online
Article
Text
id pubmed-6008453
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-60084532018-06-21 Covalent-supramolecular hybrid polymers as muscle-inspired anisotropic actuators Chin, Stacey M. Synatschke, Christopher V. Liu, Shuangping Nap, Rikkert J. Sather, Nicholas A. Wang, Qifeng Álvarez, Zaida Edelbrock, Alexandra N. Fyrner, Timmy Palmer, Liam C. Szleifer, Igal Olvera de la Cruz, Monica Stupp, Samuel I. Nat Commun Article Skeletal muscle provides inspiration on how to achieve reversible, macroscopic, anisotropic motion in soft materials. Here we report on the bottom-up design of macroscopic tubes that exhibit anisotropic actuation driven by a thermal stimulus. The tube is built from a hydrogel in which extremely long supramolecular nanofibers are aligned using weak shear forces, followed by radial growth of thermoresponsive polymers from their surfaces. The hierarchically ordered tube exhibits reversible anisotropic actuation with changes in temperature, with much greater contraction perpendicular to the direction of nanofiber alignment. We identify two critical factors for the anisotropic actuation, macroscopic alignment of the supramolecular scaffold and its covalent bonding to polymer chains. Using finite element analysis and molecular calculations, we conclude polymer chain confinement and mechanical reinforcement by rigid supramolecular nanofibers are responsible for the anisotropic actuation. The work reported suggests strategies to create soft active matter with molecularly encoded capacity to perform complex tasks. Nature Publishing Group UK 2018-06-19 /pmc/articles/PMC6008453/ /pubmed/29921928 http://dx.doi.org/10.1038/s41467-018-04800-w Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Chin, Stacey M.
Synatschke, Christopher V.
Liu, Shuangping
Nap, Rikkert J.
Sather, Nicholas A.
Wang, Qifeng
Álvarez, Zaida
Edelbrock, Alexandra N.
Fyrner, Timmy
Palmer, Liam C.
Szleifer, Igal
Olvera de la Cruz, Monica
Stupp, Samuel I.
Covalent-supramolecular hybrid polymers as muscle-inspired anisotropic actuators
title Covalent-supramolecular hybrid polymers as muscle-inspired anisotropic actuators
title_full Covalent-supramolecular hybrid polymers as muscle-inspired anisotropic actuators
title_fullStr Covalent-supramolecular hybrid polymers as muscle-inspired anisotropic actuators
title_full_unstemmed Covalent-supramolecular hybrid polymers as muscle-inspired anisotropic actuators
title_short Covalent-supramolecular hybrid polymers as muscle-inspired anisotropic actuators
title_sort covalent-supramolecular hybrid polymers as muscle-inspired anisotropic actuators
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6008453/
https://www.ncbi.nlm.nih.gov/pubmed/29921928
http://dx.doi.org/10.1038/s41467-018-04800-w
work_keys_str_mv AT chinstaceym covalentsupramolecularhybridpolymersasmuscleinspiredanisotropicactuators
AT synatschkechristopherv covalentsupramolecularhybridpolymersasmuscleinspiredanisotropicactuators
AT liushuangping covalentsupramolecularhybridpolymersasmuscleinspiredanisotropicactuators
AT naprikkertj covalentsupramolecularhybridpolymersasmuscleinspiredanisotropicactuators
AT sathernicholasa covalentsupramolecularhybridpolymersasmuscleinspiredanisotropicactuators
AT wangqifeng covalentsupramolecularhybridpolymersasmuscleinspiredanisotropicactuators
AT alvarezzaida covalentsupramolecularhybridpolymersasmuscleinspiredanisotropicactuators
AT edelbrockalexandran covalentsupramolecularhybridpolymersasmuscleinspiredanisotropicactuators
AT fyrnertimmy covalentsupramolecularhybridpolymersasmuscleinspiredanisotropicactuators
AT palmerliamc covalentsupramolecularhybridpolymersasmuscleinspiredanisotropicactuators
AT szleiferigal covalentsupramolecularhybridpolymersasmuscleinspiredanisotropicactuators
AT olveradelacruzmonica covalentsupramolecularhybridpolymersasmuscleinspiredanisotropicactuators
AT stuppsamueli covalentsupramolecularhybridpolymersasmuscleinspiredanisotropicactuators