Cargando…
Covalent-supramolecular hybrid polymers as muscle-inspired anisotropic actuators
Skeletal muscle provides inspiration on how to achieve reversible, macroscopic, anisotropic motion in soft materials. Here we report on the bottom-up design of macroscopic tubes that exhibit anisotropic actuation driven by a thermal stimulus. The tube is built from a hydrogel in which extremely long...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6008453/ https://www.ncbi.nlm.nih.gov/pubmed/29921928 http://dx.doi.org/10.1038/s41467-018-04800-w |
_version_ | 1783333178109329408 |
---|---|
author | Chin, Stacey M. Synatschke, Christopher V. Liu, Shuangping Nap, Rikkert J. Sather, Nicholas A. Wang, Qifeng Álvarez, Zaida Edelbrock, Alexandra N. Fyrner, Timmy Palmer, Liam C. Szleifer, Igal Olvera de la Cruz, Monica Stupp, Samuel I. |
author_facet | Chin, Stacey M. Synatschke, Christopher V. Liu, Shuangping Nap, Rikkert J. Sather, Nicholas A. Wang, Qifeng Álvarez, Zaida Edelbrock, Alexandra N. Fyrner, Timmy Palmer, Liam C. Szleifer, Igal Olvera de la Cruz, Monica Stupp, Samuel I. |
author_sort | Chin, Stacey M. |
collection | PubMed |
description | Skeletal muscle provides inspiration on how to achieve reversible, macroscopic, anisotropic motion in soft materials. Here we report on the bottom-up design of macroscopic tubes that exhibit anisotropic actuation driven by a thermal stimulus. The tube is built from a hydrogel in which extremely long supramolecular nanofibers are aligned using weak shear forces, followed by radial growth of thermoresponsive polymers from their surfaces. The hierarchically ordered tube exhibits reversible anisotropic actuation with changes in temperature, with much greater contraction perpendicular to the direction of nanofiber alignment. We identify two critical factors for the anisotropic actuation, macroscopic alignment of the supramolecular scaffold and its covalent bonding to polymer chains. Using finite element analysis and molecular calculations, we conclude polymer chain confinement and mechanical reinforcement by rigid supramolecular nanofibers are responsible for the anisotropic actuation. The work reported suggests strategies to create soft active matter with molecularly encoded capacity to perform complex tasks. |
format | Online Article Text |
id | pubmed-6008453 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-60084532018-06-21 Covalent-supramolecular hybrid polymers as muscle-inspired anisotropic actuators Chin, Stacey M. Synatschke, Christopher V. Liu, Shuangping Nap, Rikkert J. Sather, Nicholas A. Wang, Qifeng Álvarez, Zaida Edelbrock, Alexandra N. Fyrner, Timmy Palmer, Liam C. Szleifer, Igal Olvera de la Cruz, Monica Stupp, Samuel I. Nat Commun Article Skeletal muscle provides inspiration on how to achieve reversible, macroscopic, anisotropic motion in soft materials. Here we report on the bottom-up design of macroscopic tubes that exhibit anisotropic actuation driven by a thermal stimulus. The tube is built from a hydrogel in which extremely long supramolecular nanofibers are aligned using weak shear forces, followed by radial growth of thermoresponsive polymers from their surfaces. The hierarchically ordered tube exhibits reversible anisotropic actuation with changes in temperature, with much greater contraction perpendicular to the direction of nanofiber alignment. We identify two critical factors for the anisotropic actuation, macroscopic alignment of the supramolecular scaffold and its covalent bonding to polymer chains. Using finite element analysis and molecular calculations, we conclude polymer chain confinement and mechanical reinforcement by rigid supramolecular nanofibers are responsible for the anisotropic actuation. The work reported suggests strategies to create soft active matter with molecularly encoded capacity to perform complex tasks. Nature Publishing Group UK 2018-06-19 /pmc/articles/PMC6008453/ /pubmed/29921928 http://dx.doi.org/10.1038/s41467-018-04800-w Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Chin, Stacey M. Synatschke, Christopher V. Liu, Shuangping Nap, Rikkert J. Sather, Nicholas A. Wang, Qifeng Álvarez, Zaida Edelbrock, Alexandra N. Fyrner, Timmy Palmer, Liam C. Szleifer, Igal Olvera de la Cruz, Monica Stupp, Samuel I. Covalent-supramolecular hybrid polymers as muscle-inspired anisotropic actuators |
title | Covalent-supramolecular hybrid polymers as muscle-inspired anisotropic actuators |
title_full | Covalent-supramolecular hybrid polymers as muscle-inspired anisotropic actuators |
title_fullStr | Covalent-supramolecular hybrid polymers as muscle-inspired anisotropic actuators |
title_full_unstemmed | Covalent-supramolecular hybrid polymers as muscle-inspired anisotropic actuators |
title_short | Covalent-supramolecular hybrid polymers as muscle-inspired anisotropic actuators |
title_sort | covalent-supramolecular hybrid polymers as muscle-inspired anisotropic actuators |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6008453/ https://www.ncbi.nlm.nih.gov/pubmed/29921928 http://dx.doi.org/10.1038/s41467-018-04800-w |
work_keys_str_mv | AT chinstaceym covalentsupramolecularhybridpolymersasmuscleinspiredanisotropicactuators AT synatschkechristopherv covalentsupramolecularhybridpolymersasmuscleinspiredanisotropicactuators AT liushuangping covalentsupramolecularhybridpolymersasmuscleinspiredanisotropicactuators AT naprikkertj covalentsupramolecularhybridpolymersasmuscleinspiredanisotropicactuators AT sathernicholasa covalentsupramolecularhybridpolymersasmuscleinspiredanisotropicactuators AT wangqifeng covalentsupramolecularhybridpolymersasmuscleinspiredanisotropicactuators AT alvarezzaida covalentsupramolecularhybridpolymersasmuscleinspiredanisotropicactuators AT edelbrockalexandran covalentsupramolecularhybridpolymersasmuscleinspiredanisotropicactuators AT fyrnertimmy covalentsupramolecularhybridpolymersasmuscleinspiredanisotropicactuators AT palmerliamc covalentsupramolecularhybridpolymersasmuscleinspiredanisotropicactuators AT szleiferigal covalentsupramolecularhybridpolymersasmuscleinspiredanisotropicactuators AT olveradelacruzmonica covalentsupramolecularhybridpolymersasmuscleinspiredanisotropicactuators AT stuppsamueli covalentsupramolecularhybridpolymersasmuscleinspiredanisotropicactuators |