Cargando…
Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science
Through the success of deep learning in various domains, artificial neural networks are currently among the most used artificial intelligence methods. Taking inspiration from the network properties of biological neural networks (e.g. sparsity, scale-freeness), we argue that (contrary to general prac...
Autores principales: | Mocanu, Decebal Constantin, Mocanu, Elena, Stone, Peter, Nguyen, Phuong H., Gibescu, Madeleine, Liotta, Antonio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6008460/ https://www.ncbi.nlm.nih.gov/pubmed/29921910 http://dx.doi.org/10.1038/s41467-018-04316-3 |
Ejemplares similares
-
Decentralized dynamic understanding of hidden relations in complex networks
por: Mocanu, Decebal Constantin, et al.
Publicado: (2018) -
Author Correction: Decentralized dynamic understanding of hidden relations in complex networks
por: Mocanu, Decebal Constantin, et al.
Publicado: (2018) -
Dendritic normalisation improves learning in sparsely connected artificial neural networks
por: Bird, Alex D., et al.
Publicado: (2021) -
Science of artificial neural networks
por: Ruck, D W
Publicado: (1992) -
Science of artificial neural networks
por: Ruck, D W
Publicado: (1992)