Cargando…
A memristive plasticity model of voltage-based STDP suitable for recurrent bidirectional neural networks in the hippocampus
Memristive systems have gained considerable attention in the field of neuromorphic engineering, because they allow the emulation of synaptic functionality in solid state nano-physical systems. In this study, we show that memristive behavior provides a broad working framework for the phenomenological...
Autores principales: | Diederich, Nick, Bartsch, Thorsten, Kohlstedt, Hermann, Ziegler, Martin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6008480/ https://www.ncbi.nlm.nih.gov/pubmed/29921840 http://dx.doi.org/10.1038/s41598-018-27616-6 |
Ejemplares similares
-
Memristive stochastic plasticity enables mimicking of neural synchrony: Memristive circuit emulates an optical illusion
por: Ignatov, Marina, et al.
Publicado: (2017) -
Synchronization in STDP-driven memristive neural networks with time-varying topology
por: Yamakou, Marius E., et al.
Publicado: (2023) -
Double-Barrier Memristive Devices for Unsupervised Learning and Pattern Recognition
por: Hansen, Mirko, et al.
Publicado: (2017) -
Dual Coding with STDP in a Spiking Recurrent Neural Network Model of the Hippocampus
por: Bush, Daniel, et al.
Publicado: (2010) -
A memristive spiking neuron with firing rate coding
por: Ignatov, Marina, et al.
Publicado: (2015)