Cargando…
Structure activity relationship studies on rhodanines and derived enethiol inhibitors of metallo-β-lactamases
Metallo-β-lactamases (MBLs) enable bacterial resistance to almost all classes of β-lactam antibiotics. We report studies on enethiol containing MBL inhibitors, which were prepared by rhodanine hydrolysis. The enethiols inhibit MBLs from different subclasses. Crystallographic analyses reveal that the...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6008492/ https://www.ncbi.nlm.nih.gov/pubmed/29655609 http://dx.doi.org/10.1016/j.bmc.2018.02.043 |
_version_ | 1783333186808315904 |
---|---|
author | Zhang, Dong Markoulides, Marios S. Stepanovs, Dmitrijs Rydzik, Anna M. El-Hussein, Ahmed Bon, Corentin Kamps, Jos J.A.G. Umland, Klaus-Daniel Collins, Patrick M. Cahill, Samuel T. Wang, David Y. von Delft, Frank Brem, Jürgen McDonough, Michael A. Schofield, Christopher J. |
author_facet | Zhang, Dong Markoulides, Marios S. Stepanovs, Dmitrijs Rydzik, Anna M. El-Hussein, Ahmed Bon, Corentin Kamps, Jos J.A.G. Umland, Klaus-Daniel Collins, Patrick M. Cahill, Samuel T. Wang, David Y. von Delft, Frank Brem, Jürgen McDonough, Michael A. Schofield, Christopher J. |
author_sort | Zhang, Dong |
collection | PubMed |
description | Metallo-β-lactamases (MBLs) enable bacterial resistance to almost all classes of β-lactam antibiotics. We report studies on enethiol containing MBL inhibitors, which were prepared by rhodanine hydrolysis. The enethiols inhibit MBLs from different subclasses. Crystallographic analyses reveal that the enethiol sulphur displaces the di-Zn(II) ion bridging ‘hydrolytic’ water. In some, but not all, cases biophysical analyses provide evidence that rhodanine/enethiol inhibition involves formation of a ternary MBL enethiol rhodanine complex. The results demonstrate how low molecular weight active site Zn(II) chelating compounds can inhibit a range of clinically relevant MBLs and provide additional evidence for the potential of rhodanines to be hydrolysed to potent inhibitors of MBL protein fold and, maybe, other metallo-enzymes, perhaps contributing to the complex biological effects of rhodanines. The results imply that any medicinal chemistry studies employing rhodanines (and related scaffolds) as inhibitors should as a matter of course include testing of their hydrolysis products. |
format | Online Article Text |
id | pubmed-6008492 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Elsevier Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-60084922018-07-15 Structure activity relationship studies on rhodanines and derived enethiol inhibitors of metallo-β-lactamases Zhang, Dong Markoulides, Marios S. Stepanovs, Dmitrijs Rydzik, Anna M. El-Hussein, Ahmed Bon, Corentin Kamps, Jos J.A.G. Umland, Klaus-Daniel Collins, Patrick M. Cahill, Samuel T. Wang, David Y. von Delft, Frank Brem, Jürgen McDonough, Michael A. Schofield, Christopher J. Bioorg Med Chem Article Metallo-β-lactamases (MBLs) enable bacterial resistance to almost all classes of β-lactam antibiotics. We report studies on enethiol containing MBL inhibitors, which were prepared by rhodanine hydrolysis. The enethiols inhibit MBLs from different subclasses. Crystallographic analyses reveal that the enethiol sulphur displaces the di-Zn(II) ion bridging ‘hydrolytic’ water. In some, but not all, cases biophysical analyses provide evidence that rhodanine/enethiol inhibition involves formation of a ternary MBL enethiol rhodanine complex. The results demonstrate how low molecular weight active site Zn(II) chelating compounds can inhibit a range of clinically relevant MBLs and provide additional evidence for the potential of rhodanines to be hydrolysed to potent inhibitors of MBL protein fold and, maybe, other metallo-enzymes, perhaps contributing to the complex biological effects of rhodanines. The results imply that any medicinal chemistry studies employing rhodanines (and related scaffolds) as inhibitors should as a matter of course include testing of their hydrolysis products. Elsevier Science 2018-07-15 /pmc/articles/PMC6008492/ /pubmed/29655609 http://dx.doi.org/10.1016/j.bmc.2018.02.043 Text en © 2018 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhang, Dong Markoulides, Marios S. Stepanovs, Dmitrijs Rydzik, Anna M. El-Hussein, Ahmed Bon, Corentin Kamps, Jos J.A.G. Umland, Klaus-Daniel Collins, Patrick M. Cahill, Samuel T. Wang, David Y. von Delft, Frank Brem, Jürgen McDonough, Michael A. Schofield, Christopher J. Structure activity relationship studies on rhodanines and derived enethiol inhibitors of metallo-β-lactamases |
title | Structure activity relationship studies on rhodanines and derived enethiol inhibitors of metallo-β-lactamases |
title_full | Structure activity relationship studies on rhodanines and derived enethiol inhibitors of metallo-β-lactamases |
title_fullStr | Structure activity relationship studies on rhodanines and derived enethiol inhibitors of metallo-β-lactamases |
title_full_unstemmed | Structure activity relationship studies on rhodanines and derived enethiol inhibitors of metallo-β-lactamases |
title_short | Structure activity relationship studies on rhodanines and derived enethiol inhibitors of metallo-β-lactamases |
title_sort | structure activity relationship studies on rhodanines and derived enethiol inhibitors of metallo-β-lactamases |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6008492/ https://www.ncbi.nlm.nih.gov/pubmed/29655609 http://dx.doi.org/10.1016/j.bmc.2018.02.043 |
work_keys_str_mv | AT zhangdong structureactivityrelationshipstudiesonrhodaninesandderivedenethiolinhibitorsofmetalloblactamases AT markoulidesmarioss structureactivityrelationshipstudiesonrhodaninesandderivedenethiolinhibitorsofmetalloblactamases AT stepanovsdmitrijs structureactivityrelationshipstudiesonrhodaninesandderivedenethiolinhibitorsofmetalloblactamases AT rydzikannam structureactivityrelationshipstudiesonrhodaninesandderivedenethiolinhibitorsofmetalloblactamases AT elhusseinahmed structureactivityrelationshipstudiesonrhodaninesandderivedenethiolinhibitorsofmetalloblactamases AT boncorentin structureactivityrelationshipstudiesonrhodaninesandderivedenethiolinhibitorsofmetalloblactamases AT kampsjosjag structureactivityrelationshipstudiesonrhodaninesandderivedenethiolinhibitorsofmetalloblactamases AT umlandklausdaniel structureactivityrelationshipstudiesonrhodaninesandderivedenethiolinhibitorsofmetalloblactamases AT collinspatrickm structureactivityrelationshipstudiesonrhodaninesandderivedenethiolinhibitorsofmetalloblactamases AT cahillsamuelt structureactivityrelationshipstudiesonrhodaninesandderivedenethiolinhibitorsofmetalloblactamases AT wangdavidy structureactivityrelationshipstudiesonrhodaninesandderivedenethiolinhibitorsofmetalloblactamases AT vondelftfrank structureactivityrelationshipstudiesonrhodaninesandderivedenethiolinhibitorsofmetalloblactamases AT bremjurgen structureactivityrelationshipstudiesonrhodaninesandderivedenethiolinhibitorsofmetalloblactamases AT mcdonoughmichaela structureactivityrelationshipstudiesonrhodaninesandderivedenethiolinhibitorsofmetalloblactamases AT schofieldchristopherj structureactivityrelationshipstudiesonrhodaninesandderivedenethiolinhibitorsofmetalloblactamases |