Cargando…

Structure activity relationship studies on rhodanines and derived enethiol inhibitors of metallo-β-lactamases

Metallo-β-lactamases (MBLs) enable bacterial resistance to almost all classes of β-lactam antibiotics. We report studies on enethiol containing MBL inhibitors, which were prepared by rhodanine hydrolysis. The enethiols inhibit MBLs from different subclasses. Crystallographic analyses reveal that the...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Dong, Markoulides, Marios S., Stepanovs, Dmitrijs, Rydzik, Anna M., El-Hussein, Ahmed, Bon, Corentin, Kamps, Jos J.A.G., Umland, Klaus-Daniel, Collins, Patrick M., Cahill, Samuel T., Wang, David Y., von Delft, Frank, Brem, Jürgen, McDonough, Michael A., Schofield, Christopher J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6008492/
https://www.ncbi.nlm.nih.gov/pubmed/29655609
http://dx.doi.org/10.1016/j.bmc.2018.02.043
_version_ 1783333186808315904
author Zhang, Dong
Markoulides, Marios S.
Stepanovs, Dmitrijs
Rydzik, Anna M.
El-Hussein, Ahmed
Bon, Corentin
Kamps, Jos J.A.G.
Umland, Klaus-Daniel
Collins, Patrick M.
Cahill, Samuel T.
Wang, David Y.
von Delft, Frank
Brem, Jürgen
McDonough, Michael A.
Schofield, Christopher J.
author_facet Zhang, Dong
Markoulides, Marios S.
Stepanovs, Dmitrijs
Rydzik, Anna M.
El-Hussein, Ahmed
Bon, Corentin
Kamps, Jos J.A.G.
Umland, Klaus-Daniel
Collins, Patrick M.
Cahill, Samuel T.
Wang, David Y.
von Delft, Frank
Brem, Jürgen
McDonough, Michael A.
Schofield, Christopher J.
author_sort Zhang, Dong
collection PubMed
description Metallo-β-lactamases (MBLs) enable bacterial resistance to almost all classes of β-lactam antibiotics. We report studies on enethiol containing MBL inhibitors, which were prepared by rhodanine hydrolysis. The enethiols inhibit MBLs from different subclasses. Crystallographic analyses reveal that the enethiol sulphur displaces the di-Zn(II) ion bridging ‘hydrolytic’ water. In some, but not all, cases biophysical analyses provide evidence that rhodanine/enethiol inhibition involves formation of a ternary MBL enethiol rhodanine complex. The results demonstrate how low molecular weight active site Zn(II) chelating compounds can inhibit a range of clinically relevant MBLs and provide additional evidence for the potential of rhodanines to be hydrolysed to potent inhibitors of MBL protein fold and, maybe, other metallo-enzymes, perhaps contributing to the complex biological effects of rhodanines. The results imply that any medicinal chemistry studies employing rhodanines (and related scaffolds) as inhibitors should as a matter of course include testing of their hydrolysis products.
format Online
Article
Text
id pubmed-6008492
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Elsevier Science
record_format MEDLINE/PubMed
spelling pubmed-60084922018-07-15 Structure activity relationship studies on rhodanines and derived enethiol inhibitors of metallo-β-lactamases Zhang, Dong Markoulides, Marios S. Stepanovs, Dmitrijs Rydzik, Anna M. El-Hussein, Ahmed Bon, Corentin Kamps, Jos J.A.G. Umland, Klaus-Daniel Collins, Patrick M. Cahill, Samuel T. Wang, David Y. von Delft, Frank Brem, Jürgen McDonough, Michael A. Schofield, Christopher J. Bioorg Med Chem Article Metallo-β-lactamases (MBLs) enable bacterial resistance to almost all classes of β-lactam antibiotics. We report studies on enethiol containing MBL inhibitors, which were prepared by rhodanine hydrolysis. The enethiols inhibit MBLs from different subclasses. Crystallographic analyses reveal that the enethiol sulphur displaces the di-Zn(II) ion bridging ‘hydrolytic’ water. In some, but not all, cases biophysical analyses provide evidence that rhodanine/enethiol inhibition involves formation of a ternary MBL enethiol rhodanine complex. The results demonstrate how low molecular weight active site Zn(II) chelating compounds can inhibit a range of clinically relevant MBLs and provide additional evidence for the potential of rhodanines to be hydrolysed to potent inhibitors of MBL protein fold and, maybe, other metallo-enzymes, perhaps contributing to the complex biological effects of rhodanines. The results imply that any medicinal chemistry studies employing rhodanines (and related scaffolds) as inhibitors should as a matter of course include testing of their hydrolysis products. Elsevier Science 2018-07-15 /pmc/articles/PMC6008492/ /pubmed/29655609 http://dx.doi.org/10.1016/j.bmc.2018.02.043 Text en © 2018 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Zhang, Dong
Markoulides, Marios S.
Stepanovs, Dmitrijs
Rydzik, Anna M.
El-Hussein, Ahmed
Bon, Corentin
Kamps, Jos J.A.G.
Umland, Klaus-Daniel
Collins, Patrick M.
Cahill, Samuel T.
Wang, David Y.
von Delft, Frank
Brem, Jürgen
McDonough, Michael A.
Schofield, Christopher J.
Structure activity relationship studies on rhodanines and derived enethiol inhibitors of metallo-β-lactamases
title Structure activity relationship studies on rhodanines and derived enethiol inhibitors of metallo-β-lactamases
title_full Structure activity relationship studies on rhodanines and derived enethiol inhibitors of metallo-β-lactamases
title_fullStr Structure activity relationship studies on rhodanines and derived enethiol inhibitors of metallo-β-lactamases
title_full_unstemmed Structure activity relationship studies on rhodanines and derived enethiol inhibitors of metallo-β-lactamases
title_short Structure activity relationship studies on rhodanines and derived enethiol inhibitors of metallo-β-lactamases
title_sort structure activity relationship studies on rhodanines and derived enethiol inhibitors of metallo-β-lactamases
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6008492/
https://www.ncbi.nlm.nih.gov/pubmed/29655609
http://dx.doi.org/10.1016/j.bmc.2018.02.043
work_keys_str_mv AT zhangdong structureactivityrelationshipstudiesonrhodaninesandderivedenethiolinhibitorsofmetalloblactamases
AT markoulidesmarioss structureactivityrelationshipstudiesonrhodaninesandderivedenethiolinhibitorsofmetalloblactamases
AT stepanovsdmitrijs structureactivityrelationshipstudiesonrhodaninesandderivedenethiolinhibitorsofmetalloblactamases
AT rydzikannam structureactivityrelationshipstudiesonrhodaninesandderivedenethiolinhibitorsofmetalloblactamases
AT elhusseinahmed structureactivityrelationshipstudiesonrhodaninesandderivedenethiolinhibitorsofmetalloblactamases
AT boncorentin structureactivityrelationshipstudiesonrhodaninesandderivedenethiolinhibitorsofmetalloblactamases
AT kampsjosjag structureactivityrelationshipstudiesonrhodaninesandderivedenethiolinhibitorsofmetalloblactamases
AT umlandklausdaniel structureactivityrelationshipstudiesonrhodaninesandderivedenethiolinhibitorsofmetalloblactamases
AT collinspatrickm structureactivityrelationshipstudiesonrhodaninesandderivedenethiolinhibitorsofmetalloblactamases
AT cahillsamuelt structureactivityrelationshipstudiesonrhodaninesandderivedenethiolinhibitorsofmetalloblactamases
AT wangdavidy structureactivityrelationshipstudiesonrhodaninesandderivedenethiolinhibitorsofmetalloblactamases
AT vondelftfrank structureactivityrelationshipstudiesonrhodaninesandderivedenethiolinhibitorsofmetalloblactamases
AT bremjurgen structureactivityrelationshipstudiesonrhodaninesandderivedenethiolinhibitorsofmetalloblactamases
AT mcdonoughmichaela structureactivityrelationshipstudiesonrhodaninesandderivedenethiolinhibitorsofmetalloblactamases
AT schofieldchristopherj structureactivityrelationshipstudiesonrhodaninesandderivedenethiolinhibitorsofmetalloblactamases