Cargando…
A New Skeleton Model and the Motion Rhythm Analysis for Human Shoulder Complex Oriented to Rehabilitation Robotics
Rehabilitation robotics has become a widely accepted method to deal with the training of people with motor dysfunction. In robotics medium training, shoulder repeated exercise training has been proven beneficial for improving motion ability of human limbs. An important and difficult paradigm for mot...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6008631/ https://www.ncbi.nlm.nih.gov/pubmed/29967652 http://dx.doi.org/10.1155/2018/2719631 |
_version_ | 1783333219072999424 |
---|---|
author | Zhibin, Song Tianyu, Ma Chao, Nie Yijun, Niu |
author_facet | Zhibin, Song Tianyu, Ma Chao, Nie Yijun, Niu |
author_sort | Zhibin, Song |
collection | PubMed |
description | Rehabilitation robotics has become a widely accepted method to deal with the training of people with motor dysfunction. In robotics medium training, shoulder repeated exercise training has been proven beneficial for improving motion ability of human limbs. An important and difficult paradigm for motor function rehabilitation training is the movement rhythm on the shoulder, which is not a single joint but complex and ingenious combination of bones, muscles, ligaments, and tendons. The most robots for rehabilitation were designed previously considering simplified biomechanical models only, which led to misalignment between robots and human shoulder. Current biomechanical models were merely developed for rehabilitation robotics design. This paper proposes a new hybrid spatial model based on joint geometry constraints to describe the movement of the shoulder skeletal system and establish the position analysis equation of the model by a homogeneous coordinate transformation matrix and vector method, which can be used to calculate the kinematics of human-robot integrated system. The shoulder rhythm, the most remarkable particularity in shoulder complex kinematics and important reference for shoulder training strategy using robotics, is described and analyzed via the proposed skeleton model by three independent variables in this paper. This method greatly simplifies the complexity of the shoulder movement description and provides an important reference for the training strategy making of upper limb rehabilitation via robotics. |
format | Online Article Text |
id | pubmed-6008631 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-60086312018-07-02 A New Skeleton Model and the Motion Rhythm Analysis for Human Shoulder Complex Oriented to Rehabilitation Robotics Zhibin, Song Tianyu, Ma Chao, Nie Yijun, Niu Appl Bionics Biomech Research Article Rehabilitation robotics has become a widely accepted method to deal with the training of people with motor dysfunction. In robotics medium training, shoulder repeated exercise training has been proven beneficial for improving motion ability of human limbs. An important and difficult paradigm for motor function rehabilitation training is the movement rhythm on the shoulder, which is not a single joint but complex and ingenious combination of bones, muscles, ligaments, and tendons. The most robots for rehabilitation were designed previously considering simplified biomechanical models only, which led to misalignment between robots and human shoulder. Current biomechanical models were merely developed for rehabilitation robotics design. This paper proposes a new hybrid spatial model based on joint geometry constraints to describe the movement of the shoulder skeletal system and establish the position analysis equation of the model by a homogeneous coordinate transformation matrix and vector method, which can be used to calculate the kinematics of human-robot integrated system. The shoulder rhythm, the most remarkable particularity in shoulder complex kinematics and important reference for shoulder training strategy using robotics, is described and analyzed via the proposed skeleton model by three independent variables in this paper. This method greatly simplifies the complexity of the shoulder movement description and provides an important reference for the training strategy making of upper limb rehabilitation via robotics. Hindawi 2018-06-03 /pmc/articles/PMC6008631/ /pubmed/29967652 http://dx.doi.org/10.1155/2018/2719631 Text en Copyright © 2018 Song Zhibin et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Zhibin, Song Tianyu, Ma Chao, Nie Yijun, Niu A New Skeleton Model and the Motion Rhythm Analysis for Human Shoulder Complex Oriented to Rehabilitation Robotics |
title | A New Skeleton Model and the Motion Rhythm Analysis for Human Shoulder Complex Oriented to Rehabilitation Robotics |
title_full | A New Skeleton Model and the Motion Rhythm Analysis for Human Shoulder Complex Oriented to Rehabilitation Robotics |
title_fullStr | A New Skeleton Model and the Motion Rhythm Analysis for Human Shoulder Complex Oriented to Rehabilitation Robotics |
title_full_unstemmed | A New Skeleton Model and the Motion Rhythm Analysis for Human Shoulder Complex Oriented to Rehabilitation Robotics |
title_short | A New Skeleton Model and the Motion Rhythm Analysis for Human Shoulder Complex Oriented to Rehabilitation Robotics |
title_sort | new skeleton model and the motion rhythm analysis for human shoulder complex oriented to rehabilitation robotics |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6008631/ https://www.ncbi.nlm.nih.gov/pubmed/29967652 http://dx.doi.org/10.1155/2018/2719631 |
work_keys_str_mv | AT zhibinsong anewskeletonmodelandthemotionrhythmanalysisforhumanshouldercomplexorientedtorehabilitationrobotics AT tianyuma anewskeletonmodelandthemotionrhythmanalysisforhumanshouldercomplexorientedtorehabilitationrobotics AT chaonie anewskeletonmodelandthemotionrhythmanalysisforhumanshouldercomplexorientedtorehabilitationrobotics AT yijunniu anewskeletonmodelandthemotionrhythmanalysisforhumanshouldercomplexorientedtorehabilitationrobotics AT zhibinsong newskeletonmodelandthemotionrhythmanalysisforhumanshouldercomplexorientedtorehabilitationrobotics AT tianyuma newskeletonmodelandthemotionrhythmanalysisforhumanshouldercomplexorientedtorehabilitationrobotics AT chaonie newskeletonmodelandthemotionrhythmanalysisforhumanshouldercomplexorientedtorehabilitationrobotics AT yijunniu newskeletonmodelandthemotionrhythmanalysisforhumanshouldercomplexorientedtorehabilitationrobotics |