Cargando…
Synthesis, Morphology, and Hydrogen Absorption Properties of TiVMn and TiCrMn Nanoalloys with a FCC Structure
TiVMn and TiCrMn alloys are promising hydrogen storage materials for onboard application due to their high hydrogen absorption content. However, the traditional synthesis method of melting and continuous necessary heat treatment and activation process are energy- and time-consuming. There is rarely...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6008909/ https://www.ncbi.nlm.nih.gov/pubmed/29967659 http://dx.doi.org/10.1155/2018/5906473 |
_version_ | 1783333275083735040 |
---|---|
author | Li, Bo Li, Jianding Shao, Huaiyu Li, Wei Lin, Huaijun |
author_facet | Li, Bo Li, Jianding Shao, Huaiyu Li, Wei Lin, Huaijun |
author_sort | Li, Bo |
collection | PubMed |
description | TiVMn and TiCrMn alloys are promising hydrogen storage materials for onboard application due to their high hydrogen absorption content. However, the traditional synthesis method of melting and continuous necessary heat treatment and activation process are energy- and time-consuming. There is rarely any report on kinetics improvement and nanoprocessing in TiVMn- and TiCrMn-based alloys. Here, through ball milling with carbon black as additive, we synthesized face-centered cubic (FCC) structure TiVMn- and TiCrMn-based nanoalloys with mean particle sizes of around a few to tens of μm and with the crystallite size just 10 to 13 nm. Differential scanning calorimetry (DSC) measurements under hydrogen atmosphere of the two obtained TiVMn and TiCrMn nanoalloys show much enhancement on the hydrogen absorption performance. The mechanism of the property improvement and the difference in the two samples were discussed from microstructure and morphology aspects. The study here demonstrates a new potential methodology for development of next-generation hydrogen absorption materials. |
format | Online Article Text |
id | pubmed-6008909 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-60089092018-07-02 Synthesis, Morphology, and Hydrogen Absorption Properties of TiVMn and TiCrMn Nanoalloys with a FCC Structure Li, Bo Li, Jianding Shao, Huaiyu Li, Wei Lin, Huaijun Scanning Research Article TiVMn and TiCrMn alloys are promising hydrogen storage materials for onboard application due to their high hydrogen absorption content. However, the traditional synthesis method of melting and continuous necessary heat treatment and activation process are energy- and time-consuming. There is rarely any report on kinetics improvement and nanoprocessing in TiVMn- and TiCrMn-based alloys. Here, through ball milling with carbon black as additive, we synthesized face-centered cubic (FCC) structure TiVMn- and TiCrMn-based nanoalloys with mean particle sizes of around a few to tens of μm and with the crystallite size just 10 to 13 nm. Differential scanning calorimetry (DSC) measurements under hydrogen atmosphere of the two obtained TiVMn and TiCrMn nanoalloys show much enhancement on the hydrogen absorption performance. The mechanism of the property improvement and the difference in the two samples were discussed from microstructure and morphology aspects. The study here demonstrates a new potential methodology for development of next-generation hydrogen absorption materials. Hindawi 2018-06-03 /pmc/articles/PMC6008909/ /pubmed/29967659 http://dx.doi.org/10.1155/2018/5906473 Text en Copyright © 2018 Bo Li et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Li, Bo Li, Jianding Shao, Huaiyu Li, Wei Lin, Huaijun Synthesis, Morphology, and Hydrogen Absorption Properties of TiVMn and TiCrMn Nanoalloys with a FCC Structure |
title | Synthesis, Morphology, and Hydrogen Absorption Properties of TiVMn and TiCrMn Nanoalloys with a FCC Structure |
title_full | Synthesis, Morphology, and Hydrogen Absorption Properties of TiVMn and TiCrMn Nanoalloys with a FCC Structure |
title_fullStr | Synthesis, Morphology, and Hydrogen Absorption Properties of TiVMn and TiCrMn Nanoalloys with a FCC Structure |
title_full_unstemmed | Synthesis, Morphology, and Hydrogen Absorption Properties of TiVMn and TiCrMn Nanoalloys with a FCC Structure |
title_short | Synthesis, Morphology, and Hydrogen Absorption Properties of TiVMn and TiCrMn Nanoalloys with a FCC Structure |
title_sort | synthesis, morphology, and hydrogen absorption properties of tivmn and ticrmn nanoalloys with a fcc structure |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6008909/ https://www.ncbi.nlm.nih.gov/pubmed/29967659 http://dx.doi.org/10.1155/2018/5906473 |
work_keys_str_mv | AT libo synthesismorphologyandhydrogenabsorptionpropertiesoftivmnandticrmnnanoalloyswithafccstructure AT lijianding synthesismorphologyandhydrogenabsorptionpropertiesoftivmnandticrmnnanoalloyswithafccstructure AT shaohuaiyu synthesismorphologyandhydrogenabsorptionpropertiesoftivmnandticrmnnanoalloyswithafccstructure AT liwei synthesismorphologyandhydrogenabsorptionpropertiesoftivmnandticrmnnanoalloyswithafccstructure AT linhuaijun synthesismorphologyandhydrogenabsorptionpropertiesoftivmnandticrmnnanoalloyswithafccstructure |