Cargando…
Oxidized lipids keep heat shock chaperones busy: new insights on the deficiencies of tumour-associated dendritic cells
In a recent publication in Nature Communications the group of Dr. Dmitry Gabrilovich takes us one step closer to understanding why lipid accumulation impairs the function of tumour-associated dendritic cells (DCs). In this study, the authors present two surprising and significant findings. First, th...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6008926/ https://www.ncbi.nlm.nih.gov/pubmed/29921314 http://dx.doi.org/10.1186/s40425-018-0373-3 |
Sumario: | In a recent publication in Nature Communications the group of Dr. Dmitry Gabrilovich takes us one step closer to understanding why lipid accumulation impairs the function of tumour-associated dendritic cells (DCs). In this study, the authors present two surprising and significant findings. First, they show that in mouse DCs oxidized lipids function as a sink that traps the heat shock chaperone HSP70, a molecular target of emerging anti-cancer strategies. Secondly, they find that HSP70 in turn regulates the trafficking of peptide-loaded major histocompatibility complex class I (pMHC-I) molecules, a complex that triggers the proliferation of cancer-killing T cells. These observations are discussed briefly in the context of lipid droplet function and pMHC-I trafficking in tumour-associated DCs, as well as HSP70’s pleiotropic and incompletely understood roles - and what they mean for future cancer therapy designs. |
---|