Cargando…

Modeling the Pseudomonas Sulfur Regulome by Quantifying the Storage and Communication of Information

Bacteria are not simply passive consumers of nutrients or merely steady-state systems. Rather, bacteria are active participants in their environments, collecting information from their surroundings and processing and using that information to adapt their behavior and optimize survival. The bacterial...

Descripción completa

Detalles Bibliográficos
Autores principales: Larsen, Peter E., Zerbs, Sarah, Laible, Philip D., Collart, Frank R., Korajczyk, Peter, Dai, Yang, Noirot, Philippe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6009100/
https://www.ncbi.nlm.nih.gov/pubmed/29946568
http://dx.doi.org/10.1128/mSystems.00189-17
_version_ 1783333313930330112
author Larsen, Peter E.
Zerbs, Sarah
Laible, Philip D.
Collart, Frank R.
Korajczyk, Peter
Dai, Yang
Noirot, Philippe
author_facet Larsen, Peter E.
Zerbs, Sarah
Laible, Philip D.
Collart, Frank R.
Korajczyk, Peter
Dai, Yang
Noirot, Philippe
author_sort Larsen, Peter E.
collection PubMed
description Bacteria are not simply passive consumers of nutrients or merely steady-state systems. Rather, bacteria are active participants in their environments, collecting information from their surroundings and processing and using that information to adapt their behavior and optimize survival. The bacterial regulome is the set of physical interactions that link environmental information to the expression of genes by way of networks of sensors, transporters, signal cascades, and transcription factors. As bacteria cannot have one dedicated sensor and regulatory response system for every possible condition that they may encounter, the sensor systems must respond to a variety of overlapping stimuli and collate multiple forms of information to make “decisions” about the most appropriate response to a specific set of environmental conditions. Here, we analyze Pseudomonas fluorescens transcriptional responses to multiple sulfur nutrient sources to generate a predictive, computational model of the sulfur regulome. To model the regulome, we utilize a transmitter-channel-receiver scheme of information transfer and utilize principles from information theory to portray P. fluorescens as an informatics system. This approach enables us to exploit the well-established metrics associated with information theory to model the sulfur regulome. Our computational modeling analysis results in the accurate prediction of gene expression patterns in response to the specific sulfur nutrient environments and provides insights into the molecular mechanisms of Pseudomonas sensory capabilities and gene regulatory networks. In addition, modeling the bacterial regulome using the tools of information theory is a powerful and generalizable approach that will have multiple future applications to other bacterial regulomes. IMPORTANCE Bacteria sense and respond to their environments using a sophisticated array of sensors and regulatory networks to optimize their fitness and survival in a constantly changing environment. Understanding how these regulatory and sensory networks work will provide the capacity to predict bacterial behaviors and, potentially, to manipulate their interactions with an environment or host. Leveraging the information theory provides useful quantitative metrics for modeling the information processing capacity of bacterial regulatory networks. As our model accurately predicted gene expression profiles in a bacterial model system, we posit that the information theory-based approaches will be important to enhance our understanding of a wide variety of bacterial regulomes and our ability to engineer bacterial sensory and regulatory networks.
format Online
Article
Text
id pubmed-6009100
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-60091002018-06-26 Modeling the Pseudomonas Sulfur Regulome by Quantifying the Storage and Communication of Information Larsen, Peter E. Zerbs, Sarah Laible, Philip D. Collart, Frank R. Korajczyk, Peter Dai, Yang Noirot, Philippe mSystems Research Article Bacteria are not simply passive consumers of nutrients or merely steady-state systems. Rather, bacteria are active participants in their environments, collecting information from their surroundings and processing and using that information to adapt their behavior and optimize survival. The bacterial regulome is the set of physical interactions that link environmental information to the expression of genes by way of networks of sensors, transporters, signal cascades, and transcription factors. As bacteria cannot have one dedicated sensor and regulatory response system for every possible condition that they may encounter, the sensor systems must respond to a variety of overlapping stimuli and collate multiple forms of information to make “decisions” about the most appropriate response to a specific set of environmental conditions. Here, we analyze Pseudomonas fluorescens transcriptional responses to multiple sulfur nutrient sources to generate a predictive, computational model of the sulfur regulome. To model the regulome, we utilize a transmitter-channel-receiver scheme of information transfer and utilize principles from information theory to portray P. fluorescens as an informatics system. This approach enables us to exploit the well-established metrics associated with information theory to model the sulfur regulome. Our computational modeling analysis results in the accurate prediction of gene expression patterns in response to the specific sulfur nutrient environments and provides insights into the molecular mechanisms of Pseudomonas sensory capabilities and gene regulatory networks. In addition, modeling the bacterial regulome using the tools of information theory is a powerful and generalizable approach that will have multiple future applications to other bacterial regulomes. IMPORTANCE Bacteria sense and respond to their environments using a sophisticated array of sensors and regulatory networks to optimize their fitness and survival in a constantly changing environment. Understanding how these regulatory and sensory networks work will provide the capacity to predict bacterial behaviors and, potentially, to manipulate their interactions with an environment or host. Leveraging the information theory provides useful quantitative metrics for modeling the information processing capacity of bacterial regulatory networks. As our model accurately predicted gene expression profiles in a bacterial model system, we posit that the information theory-based approaches will be important to enhance our understanding of a wide variety of bacterial regulomes and our ability to engineer bacterial sensory and regulatory networks. American Society for Microbiology 2018-06-19 /pmc/articles/PMC6009100/ /pubmed/29946568 http://dx.doi.org/10.1128/mSystems.00189-17 Text en https://doi.org/10.1128/AuthorWarrantyLicense.v1 This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply.
spellingShingle Research Article
Larsen, Peter E.
Zerbs, Sarah
Laible, Philip D.
Collart, Frank R.
Korajczyk, Peter
Dai, Yang
Noirot, Philippe
Modeling the Pseudomonas Sulfur Regulome by Quantifying the Storage and Communication of Information
title Modeling the Pseudomonas Sulfur Regulome by Quantifying the Storage and Communication of Information
title_full Modeling the Pseudomonas Sulfur Regulome by Quantifying the Storage and Communication of Information
title_fullStr Modeling the Pseudomonas Sulfur Regulome by Quantifying the Storage and Communication of Information
title_full_unstemmed Modeling the Pseudomonas Sulfur Regulome by Quantifying the Storage and Communication of Information
title_short Modeling the Pseudomonas Sulfur Regulome by Quantifying the Storage and Communication of Information
title_sort modeling the pseudomonas sulfur regulome by quantifying the storage and communication of information
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6009100/
https://www.ncbi.nlm.nih.gov/pubmed/29946568
http://dx.doi.org/10.1128/mSystems.00189-17
work_keys_str_mv AT larsenpetere modelingthepseudomonassulfurregulomebyquantifyingthestorageandcommunicationofinformation
AT zerbssarah modelingthepseudomonassulfurregulomebyquantifyingthestorageandcommunicationofinformation
AT laiblephilipd modelingthepseudomonassulfurregulomebyquantifyingthestorageandcommunicationofinformation
AT collartfrankr modelingthepseudomonassulfurregulomebyquantifyingthestorageandcommunicationofinformation
AT korajczykpeter modelingthepseudomonassulfurregulomebyquantifyingthestorageandcommunicationofinformation
AT daiyang modelingthepseudomonassulfurregulomebyquantifyingthestorageandcommunicationofinformation
AT noirotphilippe modelingthepseudomonassulfurregulomebyquantifyingthestorageandcommunicationofinformation