Cargando…
DeFine: deep convolutional neural networks accurately quantify intensities of transcription factor-DNA binding and facilitate evaluation of functional non-coding variants
The complex system of gene expression is regulated by the cell type-specific binding of transcription factors (TFs) to regulatory elements. Identifying variants that disrupt TF binding and lead to human diseases remains a great challenge. To address this, we implement sequence-based deep learning mo...
Autores principales: | Wang, Meng, Tai, Cheng, E, Weinan, Wei, Liping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6009584/ https://www.ncbi.nlm.nih.gov/pubmed/29617928 http://dx.doi.org/10.1093/nar/gky215 |
Ejemplares similares
-
DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences
por: Quang, Daniel, et al.
Publicado: (2016) -
DeepCAPE: A Deep Convolutional Neural Network for the Accurate Prediction of Enhancers
por: Chen, Shengquan, et al.
Publicado: (2021) -
Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks
por: Kelley, David R., et al.
Publicado: (2016) -
UFold: fast and accurate RNA secondary structure prediction with deep learning
por: Fu, Laiyi, et al.
Publicado: (2021) -
Deeplasmid: deep learning accurately separates plasmids from bacterial chromosomes
por: Andreopoulos, William B, et al.
Publicado: (2021)