Cargando…
The structure of the TsaB/TsaD/TsaE complex reveals an unexpected mechanism for the bacterial t(6)A tRNA-modification
The universal N(6)-threonylcarbamoyladenosine (t(6)A) modification at position A37 of ANN-decoding tRNAs is essential for translational fidelity. In bacteria the TsaC enzyme first synthesizes an l-threonylcarbamoyladenylate (TC-AMP) intermediate. In cooperation with TsaB and TsaE, TsaD then transfer...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6009658/ https://www.ncbi.nlm.nih.gov/pubmed/29741707 http://dx.doi.org/10.1093/nar/gky323 |
_version_ | 1783333436600090624 |
---|---|
author | Missoury, Sophia Plancqueel, Stéphane Li de la Sierra-Gallay, Ines Zhang, Wenhua Liger, Dominique Durand, Dominique Dammak, Raoudha Collinet, Bruno van Tilbeurgh, Herman |
author_facet | Missoury, Sophia Plancqueel, Stéphane Li de la Sierra-Gallay, Ines Zhang, Wenhua Liger, Dominique Durand, Dominique Dammak, Raoudha Collinet, Bruno van Tilbeurgh, Herman |
author_sort | Missoury, Sophia |
collection | PubMed |
description | The universal N(6)-threonylcarbamoyladenosine (t(6)A) modification at position A37 of ANN-decoding tRNAs is essential for translational fidelity. In bacteria the TsaC enzyme first synthesizes an l-threonylcarbamoyladenylate (TC-AMP) intermediate. In cooperation with TsaB and TsaE, TsaD then transfers the l-threonylcarbamoyl-moiety from TC-AMP onto tRNA. We determined the crystal structure of the TsaB–TsaE–TsaD (TsaBDE) complex of Thermotoga maritima in presence of a non-hydrolysable AMPCPP. TsaE is positioned at the entrance of the active site pocket of TsaD, contacting both the TsaB and TsaD subunits and prohibiting simultaneous tRNA binding. AMPCPP occupies the ATP binding site of TsaE and is sandwiched between TsaE and TsaD. Unexpectedly, the binding of TsaE partially denatures the active site of TsaD causing loss of its essential metal binding sites. TsaE interferes in a pre- or post-catalytic step and its binding to TsaBD is regulated by ATP hydrolysis. This novel binding mode and activation mechanism of TsaE offers good opportunities for antimicrobial drug development. |
format | Online Article Text |
id | pubmed-6009658 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-60096582018-06-25 The structure of the TsaB/TsaD/TsaE complex reveals an unexpected mechanism for the bacterial t(6)A tRNA-modification Missoury, Sophia Plancqueel, Stéphane Li de la Sierra-Gallay, Ines Zhang, Wenhua Liger, Dominique Durand, Dominique Dammak, Raoudha Collinet, Bruno van Tilbeurgh, Herman Nucleic Acids Res Structural Biology The universal N(6)-threonylcarbamoyladenosine (t(6)A) modification at position A37 of ANN-decoding tRNAs is essential for translational fidelity. In bacteria the TsaC enzyme first synthesizes an l-threonylcarbamoyladenylate (TC-AMP) intermediate. In cooperation with TsaB and TsaE, TsaD then transfers the l-threonylcarbamoyl-moiety from TC-AMP onto tRNA. We determined the crystal structure of the TsaB–TsaE–TsaD (TsaBDE) complex of Thermotoga maritima in presence of a non-hydrolysable AMPCPP. TsaE is positioned at the entrance of the active site pocket of TsaD, contacting both the TsaB and TsaD subunits and prohibiting simultaneous tRNA binding. AMPCPP occupies the ATP binding site of TsaE and is sandwiched between TsaE and TsaD. Unexpectedly, the binding of TsaE partially denatures the active site of TsaD causing loss of its essential metal binding sites. TsaE interferes in a pre- or post-catalytic step and its binding to TsaBD is regulated by ATP hydrolysis. This novel binding mode and activation mechanism of TsaE offers good opportunities for antimicrobial drug development. Oxford University Press 2018-06-20 2018-05-08 /pmc/articles/PMC6009658/ /pubmed/29741707 http://dx.doi.org/10.1093/nar/gky323 Text en © The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Structural Biology Missoury, Sophia Plancqueel, Stéphane Li de la Sierra-Gallay, Ines Zhang, Wenhua Liger, Dominique Durand, Dominique Dammak, Raoudha Collinet, Bruno van Tilbeurgh, Herman The structure of the TsaB/TsaD/TsaE complex reveals an unexpected mechanism for the bacterial t(6)A tRNA-modification |
title | The structure of the TsaB/TsaD/TsaE complex reveals an unexpected mechanism for the bacterial t(6)A tRNA-modification |
title_full | The structure of the TsaB/TsaD/TsaE complex reveals an unexpected mechanism for the bacterial t(6)A tRNA-modification |
title_fullStr | The structure of the TsaB/TsaD/TsaE complex reveals an unexpected mechanism for the bacterial t(6)A tRNA-modification |
title_full_unstemmed | The structure of the TsaB/TsaD/TsaE complex reveals an unexpected mechanism for the bacterial t(6)A tRNA-modification |
title_short | The structure of the TsaB/TsaD/TsaE complex reveals an unexpected mechanism for the bacterial t(6)A tRNA-modification |
title_sort | structure of the tsab/tsad/tsae complex reveals an unexpected mechanism for the bacterial t(6)a trna-modification |
topic | Structural Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6009658/ https://www.ncbi.nlm.nih.gov/pubmed/29741707 http://dx.doi.org/10.1093/nar/gky323 |
work_keys_str_mv | AT missourysophia thestructureofthetsabtsadtsaecomplexrevealsanunexpectedmechanismforthebacterialt6atrnamodification AT plancqueelstephane thestructureofthetsabtsadtsaecomplexrevealsanunexpectedmechanismforthebacterialt6atrnamodification AT lidelasierragallayines thestructureofthetsabtsadtsaecomplexrevealsanunexpectedmechanismforthebacterialt6atrnamodification AT zhangwenhua thestructureofthetsabtsadtsaecomplexrevealsanunexpectedmechanismforthebacterialt6atrnamodification AT ligerdominique thestructureofthetsabtsadtsaecomplexrevealsanunexpectedmechanismforthebacterialt6atrnamodification AT duranddominique thestructureofthetsabtsadtsaecomplexrevealsanunexpectedmechanismforthebacterialt6atrnamodification AT dammakraoudha thestructureofthetsabtsadtsaecomplexrevealsanunexpectedmechanismforthebacterialt6atrnamodification AT collinetbruno thestructureofthetsabtsadtsaecomplexrevealsanunexpectedmechanismforthebacterialt6atrnamodification AT vantilbeurghherman thestructureofthetsabtsadtsaecomplexrevealsanunexpectedmechanismforthebacterialt6atrnamodification AT missourysophia structureofthetsabtsadtsaecomplexrevealsanunexpectedmechanismforthebacterialt6atrnamodification AT plancqueelstephane structureofthetsabtsadtsaecomplexrevealsanunexpectedmechanismforthebacterialt6atrnamodification AT lidelasierragallayines structureofthetsabtsadtsaecomplexrevealsanunexpectedmechanismforthebacterialt6atrnamodification AT zhangwenhua structureofthetsabtsadtsaecomplexrevealsanunexpectedmechanismforthebacterialt6atrnamodification AT ligerdominique structureofthetsabtsadtsaecomplexrevealsanunexpectedmechanismforthebacterialt6atrnamodification AT duranddominique structureofthetsabtsadtsaecomplexrevealsanunexpectedmechanismforthebacterialt6atrnamodification AT dammakraoudha structureofthetsabtsadtsaecomplexrevealsanunexpectedmechanismforthebacterialt6atrnamodification AT collinetbruno structureofthetsabtsadtsaecomplexrevealsanunexpectedmechanismforthebacterialt6atrnamodification AT vantilbeurghherman structureofthetsabtsadtsaecomplexrevealsanunexpectedmechanismforthebacterialt6atrnamodification |