Cargando…

The structure of the TsaB/TsaD/TsaE complex reveals an unexpected mechanism for the bacterial t(6)A tRNA-modification

The universal N(6)-threonylcarbamoyladenosine (t(6)A) modification at position A37 of ANN-decoding tRNAs is essential for translational fidelity. In bacteria the TsaC enzyme first synthesizes an l-threonylcarbamoyladenylate (TC-AMP) intermediate. In cooperation with TsaB and TsaE, TsaD then transfer...

Descripción completa

Detalles Bibliográficos
Autores principales: Missoury, Sophia, Plancqueel, Stéphane, Li de la Sierra-Gallay, Ines, Zhang, Wenhua, Liger, Dominique, Durand, Dominique, Dammak, Raoudha, Collinet, Bruno, van Tilbeurgh, Herman
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6009658/
https://www.ncbi.nlm.nih.gov/pubmed/29741707
http://dx.doi.org/10.1093/nar/gky323
_version_ 1783333436600090624
author Missoury, Sophia
Plancqueel, Stéphane
Li de la Sierra-Gallay, Ines
Zhang, Wenhua
Liger, Dominique
Durand, Dominique
Dammak, Raoudha
Collinet, Bruno
van Tilbeurgh, Herman
author_facet Missoury, Sophia
Plancqueel, Stéphane
Li de la Sierra-Gallay, Ines
Zhang, Wenhua
Liger, Dominique
Durand, Dominique
Dammak, Raoudha
Collinet, Bruno
van Tilbeurgh, Herman
author_sort Missoury, Sophia
collection PubMed
description The universal N(6)-threonylcarbamoyladenosine (t(6)A) modification at position A37 of ANN-decoding tRNAs is essential for translational fidelity. In bacteria the TsaC enzyme first synthesizes an l-threonylcarbamoyladenylate (TC-AMP) intermediate. In cooperation with TsaB and TsaE, TsaD then transfers the l-threonylcarbamoyl-moiety from TC-AMP onto tRNA. We determined the crystal structure of the TsaB–TsaE–TsaD (TsaBDE) complex of Thermotoga maritima in presence of a non-hydrolysable AMPCPP. TsaE is positioned at the entrance of the active site pocket of TsaD, contacting both the TsaB and TsaD subunits and prohibiting simultaneous tRNA binding. AMPCPP occupies the ATP binding site of TsaE and is sandwiched between TsaE and TsaD. Unexpectedly, the binding of TsaE partially denatures the active site of TsaD causing loss of its essential metal binding sites. TsaE interferes in a pre- or post-catalytic step and its binding to TsaBD is regulated by ATP hydrolysis. This novel binding mode and activation mechanism of TsaE offers good opportunities for antimicrobial drug development.
format Online
Article
Text
id pubmed-6009658
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-60096582018-06-25 The structure of the TsaB/TsaD/TsaE complex reveals an unexpected mechanism for the bacterial t(6)A tRNA-modification Missoury, Sophia Plancqueel, Stéphane Li de la Sierra-Gallay, Ines Zhang, Wenhua Liger, Dominique Durand, Dominique Dammak, Raoudha Collinet, Bruno van Tilbeurgh, Herman Nucleic Acids Res Structural Biology The universal N(6)-threonylcarbamoyladenosine (t(6)A) modification at position A37 of ANN-decoding tRNAs is essential for translational fidelity. In bacteria the TsaC enzyme first synthesizes an l-threonylcarbamoyladenylate (TC-AMP) intermediate. In cooperation with TsaB and TsaE, TsaD then transfers the l-threonylcarbamoyl-moiety from TC-AMP onto tRNA. We determined the crystal structure of the TsaB–TsaE–TsaD (TsaBDE) complex of Thermotoga maritima in presence of a non-hydrolysable AMPCPP. TsaE is positioned at the entrance of the active site pocket of TsaD, contacting both the TsaB and TsaD subunits and prohibiting simultaneous tRNA binding. AMPCPP occupies the ATP binding site of TsaE and is sandwiched between TsaE and TsaD. Unexpectedly, the binding of TsaE partially denatures the active site of TsaD causing loss of its essential metal binding sites. TsaE interferes in a pre- or post-catalytic step and its binding to TsaBD is regulated by ATP hydrolysis. This novel binding mode and activation mechanism of TsaE offers good opportunities for antimicrobial drug development. Oxford University Press 2018-06-20 2018-05-08 /pmc/articles/PMC6009658/ /pubmed/29741707 http://dx.doi.org/10.1093/nar/gky323 Text en © The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Structural Biology
Missoury, Sophia
Plancqueel, Stéphane
Li de la Sierra-Gallay, Ines
Zhang, Wenhua
Liger, Dominique
Durand, Dominique
Dammak, Raoudha
Collinet, Bruno
van Tilbeurgh, Herman
The structure of the TsaB/TsaD/TsaE complex reveals an unexpected mechanism for the bacterial t(6)A tRNA-modification
title The structure of the TsaB/TsaD/TsaE complex reveals an unexpected mechanism for the bacterial t(6)A tRNA-modification
title_full The structure of the TsaB/TsaD/TsaE complex reveals an unexpected mechanism for the bacterial t(6)A tRNA-modification
title_fullStr The structure of the TsaB/TsaD/TsaE complex reveals an unexpected mechanism for the bacterial t(6)A tRNA-modification
title_full_unstemmed The structure of the TsaB/TsaD/TsaE complex reveals an unexpected mechanism for the bacterial t(6)A tRNA-modification
title_short The structure of the TsaB/TsaD/TsaE complex reveals an unexpected mechanism for the bacterial t(6)A tRNA-modification
title_sort structure of the tsab/tsad/tsae complex reveals an unexpected mechanism for the bacterial t(6)a trna-modification
topic Structural Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6009658/
https://www.ncbi.nlm.nih.gov/pubmed/29741707
http://dx.doi.org/10.1093/nar/gky323
work_keys_str_mv AT missourysophia thestructureofthetsabtsadtsaecomplexrevealsanunexpectedmechanismforthebacterialt6atrnamodification
AT plancqueelstephane thestructureofthetsabtsadtsaecomplexrevealsanunexpectedmechanismforthebacterialt6atrnamodification
AT lidelasierragallayines thestructureofthetsabtsadtsaecomplexrevealsanunexpectedmechanismforthebacterialt6atrnamodification
AT zhangwenhua thestructureofthetsabtsadtsaecomplexrevealsanunexpectedmechanismforthebacterialt6atrnamodification
AT ligerdominique thestructureofthetsabtsadtsaecomplexrevealsanunexpectedmechanismforthebacterialt6atrnamodification
AT duranddominique thestructureofthetsabtsadtsaecomplexrevealsanunexpectedmechanismforthebacterialt6atrnamodification
AT dammakraoudha thestructureofthetsabtsadtsaecomplexrevealsanunexpectedmechanismforthebacterialt6atrnamodification
AT collinetbruno thestructureofthetsabtsadtsaecomplexrevealsanunexpectedmechanismforthebacterialt6atrnamodification
AT vantilbeurghherman thestructureofthetsabtsadtsaecomplexrevealsanunexpectedmechanismforthebacterialt6atrnamodification
AT missourysophia structureofthetsabtsadtsaecomplexrevealsanunexpectedmechanismforthebacterialt6atrnamodification
AT plancqueelstephane structureofthetsabtsadtsaecomplexrevealsanunexpectedmechanismforthebacterialt6atrnamodification
AT lidelasierragallayines structureofthetsabtsadtsaecomplexrevealsanunexpectedmechanismforthebacterialt6atrnamodification
AT zhangwenhua structureofthetsabtsadtsaecomplexrevealsanunexpectedmechanismforthebacterialt6atrnamodification
AT ligerdominique structureofthetsabtsadtsaecomplexrevealsanunexpectedmechanismforthebacterialt6atrnamodification
AT duranddominique structureofthetsabtsadtsaecomplexrevealsanunexpectedmechanismforthebacterialt6atrnamodification
AT dammakraoudha structureofthetsabtsadtsaecomplexrevealsanunexpectedmechanismforthebacterialt6atrnamodification
AT collinetbruno structureofthetsabtsadtsaecomplexrevealsanunexpectedmechanismforthebacterialt6atrnamodification
AT vantilbeurghherman structureofthetsabtsadtsaecomplexrevealsanunexpectedmechanismforthebacterialt6atrnamodification